⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 optexpsun.f

📁 对工业生产过程结晶过程的一个仿真程序软件包
💻 F
📖 第 1 页 / 共 2 页
字号:
         derivIg(I+1)=-const1*DEXP(-const1*Y(3))*Y(18)
	 derivIlnkg(I+1)=-const1*DEXP(-const1*Y(3))*Y(19)
         derivIb(I+1)=-const1*DEXP(-const1*Y(3))*Y(20)
         derivIlnkb(I+1)=-const1*DEXP(-const1*Y(3))*Y(21)        
         derivconcg(I+1)=Y(30)
	 derivconclnkg(I+1)=Y(31)
         derivconcb(I+1)=Y(32)
         derivconclnkb(I+1)=Y(33)

         F(2*(I-1)+1,1)=derivIg(I+1)
      	 F(2*(I-1)+1,2)=derivIlnkg(I+1)
      	 F(2*(I-1)+1,3)=derivIb(I+1)
      	 F(2*(I-1)+1,4)=derivIlnkb(I+1)
      	 F(2*(I-1)+2,1)=derivconcg(I+1)
      	 F(2*(I-1)+2,2)=derivconclnkg(I+1)
      	 F(2*(I-1)+2,3)=derivconcb(I+1)
      	 F(2*(I-1)+2,4)=derivconclnkb(I+1)


 1200 CONTINUE
*	WRITE(*,*) 'done'
*	WRITE(*,*) 'done'

1     FORMAT(2(F13.6,3x))
2     FORMAT(I1)
3     FORMAT(2(E16.6,3x),2(F16.6,3x))


      DO 1370 I = 1, NTHETA
         DO 1375 J = 1, 2*(NSTEP-1), 2
            FTV(I,J)=F(J,I)/(sigma_trans**2.D0)
            FTV(I,J+1)=F(J+1,I)/(sigma_conc**2.0D0)
1375     CONTINUE
1370  CONTINUE


      DO 1400 I = 1, NTHETA
        DO 1500 J = 1, NTHETA
           FTVF(I,J) = 0.0D0
           DO 1600 K = 1, 2*(NSTEP-1)
               FTVF(I,J)=FTVF(I,J)+FTV(I,K)*F(K,J)
1600       CONTINUE
1500    CONTINUE
1400  CONTINUE

 
*      weight_mean_size=moment4(NSTEP)/moment3(NSTEP)
*      cov=DSQRT(moment2(NSTEP)*moment0(NSTEP)/
*    &		(moment1(NSTEP))**2.0D0-1.0D0)
*      mass_ratio=(moment3(NSTEP)-seed_moment3(NSTEP))/
*     &     seed_moment3(NSTEP)

*      PRINT*,'The weight mean size (in microns) is ',
*     &     weight_mean_size
*     PRINT*,'The coefficient of variance is ', cov
*     PRINT*,'The nucleation to seed mass ratio is ', mass_ratio

*Calculate determinant of FTVF,
*which is symmetric with dimensions NTHETA by NTHETA

      detFTVF =	(FTVF(1,3)*FTVF(2,4)-FTVF(1,4)*FTVF(2,3))**2.D0+
     &		(FTVF(1,3)*FTVF(3,4)-FTVF(3,3)*FTVF(1,4))*
     &			(FTVF(1,4)*FTVF(2,2)-FTVF(1,2)*FTVF(2,4))+
     &		(FTVF(2,3)*FTVF(3,4)-FTVF(3,3)*FTVF(2,4))*
     &			(FTVF(1,1)*FTVF(2,4)-FTVF(1,4)*FTVF(1,2))+
     &		(FTVF(1,3)*FTVF(4,4)-FTVF(3,4)*FTVF(1,4))*
     &			(FTVF(1,2)*FTVF(2,3)-FTVF(1,3)*FTVF(2,2))+
     &		(FTVF(2,3)*FTVF(4,4)-FTVF(3,4)*FTVF(2,4))*
     &			(FTVF(1,2)*FTVF(1,3)-FTVF(1,1)*FTVF(2,3))+
     &		(FTVF(3,3)*FTVF(4,4)-FTVF(3,4)*FTVF(3,4))*
     &			(FTVF(1,1)*FTVF(2,2)-FTVF(1,2)*FTVF(1,2))
    
*      PRINT*, "Determinant of FTVF = ", detFTVF 
      

      fj = -DLOG(detFTVF)
*      PRINT*, "fj = ", fj
*      WRITE(11,666) fj
666   FORMAT('-DLOG(detFTVF) = ',F13.6)


*      DO 1482 I = 1, NSTEP
*	  IF(Temp(time(I)).GT.umax) THEN
*		H=H+Kpenalty*(Temp(time(I))-umax)
*	  ELSE IF (Temp(time(I)).LT.umin) THEN
*		H=H+Kpenalty*(umin-Temp(time(I)))
*          ENDIF
*1482   CONTINUE


*      DO 1300 I=1,NSTEP
*	real_time(I)=sngl(time(I))
*	real_temperature(I)=sngl(Temp(time(I)))
*	real_concentration(I)=sngl(concentration(I))
*	real_moment0(I)=sngl(moment0(I))
*	real_moment1(I)=sngl(moment1(I))*1E-4
*	real_moment2(I)=sngl(moment2(I))*(1E-4)**2
*	real_moment3(I)=sngl(moment3(I))*(1E-4)**3
*	real_transmittance(I)=sngl(transmittance(I))
*	real_satn(I)=sngl(relsatn(I))
*	real_derivIg(I)=sngl(derivIg(I))
*	real_derivIlnkg(I)=sngl(derivIlnkg(I))
*	real_derivIb(I)=sngl(derivIb(I))
*	real_derivIlnkb(I)=sngl(derivIlnkb(I))
*	real_derivconcg(I)=sngl(derivconcg(I))
*	real_derivconclnkg(I)=sngl(derivconclnkg(I))
*	real_derivconcb(I)=sngl(derivconcb(I))
*	real_derivconclnkb(I)=sngl(derivconclnkb(I))
*1300  CONTINUE

*      DO 1850 I = 1 , NSTEP
*         DO 1860 J = 1, NU
*            DO 1870 K = 1, NTHETA
*               real_derivtheta(I,J,K)=sngl(derivtheta(I,J,K))
*1870        CONTINUE
*1860     CONTINUE
*1850  CONTINUE
*      PRINT*
*      WRITE(*,11)FTVF(1,1), FTVF(1,2),FTVF(1,3),FTVF(1,4)
*      WRITE(*,11)FTVF(2,1), FTVF(2,2),FTVF(2,3),FTVF(2,4)
*      WRITE(*,11)FTVF(3,1), FTVF(3,2),FTVF(3,3),FTVF(3,4)
*      WRITE(*,11)FTVF(4,1), FTVF(4,2),FTVF(4,3),FTVF(4,4)

*11     FORMAT(4(F16.4,2x))
*      K=1	
*      DO 643 I = 1 , 2
*         DO 653 J = 1, 2
*            PNginverse(K)=FTVF(I,J)
*            K=K+1
*653      CONTINUE
*643   CONTINUE

*      K=1	
*      DO 663 I = 3 , 4
*         DO 673 J = 3, 4
*            PNbinverse(K)=FTVF(I,J)
*            K=K+1
*673      CONTINUE
*663   CONTINUE

*      CALL DEVCSF(2, PNginverse, 2, EVALg, EVECg, 2)
*      CALL DEVCSF(2, PNbinverse, 2, EVALb, EVECb, 2)
*      CALL DLINRG(NTHETA,FTVF,NTHETA, inv_FTVF,NTHETA)
*      chi_squared=11.1
*      g_interval=DSQRT(chi_squared*inv_FTVF(1,1))
*      lnkg_interval=DSQRT(chi_squared*inv_FTVF(2,2))
*      b_interval=DSQRT(chi_squared*inv_FTVF(3,3))
*      lnkb_interval=DSQRT(chi_squared*inv_FTVF(4,4))

*      PRINT*
*      PRINT*,'g = ', g, '+/- ', g_interval
*      PRINT*,'ln kg = ',DLOG(kg),'+/- ', lnkg_interval
*      PRINT*,' b = ',b,'+/- ', b_interval
*      PRINT*,'ln kb = ',DLOG(kb),'+/- ', lnkb_interval
     
*      DO 762 K = 1, (NSTEP-1)
*         DO 763 M = 1 , NU
*                WRITE(23,12)derivtheta(K,M,1),derivtheta(K,M,2)/kg,
*     &			derivtheta(K,M,3), derivtheta(K,M,4)/kb
*763      CONTINUE
*             WRITE(23,*)
*762   CONTINUE


      RETURN
      END

*****************************************************************

      SUBROUTINE cntr(Nvar,jjj,x,gj)
*
*	cntr is the subroutine for the constraints.  The
*	constraints are listed in the following order:   
*	Nonlinear inequality constraints, linear inequality 
*	constraints, nonlinear equality constraints, and linear 
*	equality constraints.
*
*     input:   Nvar - number of parameters
*	       jjj  - indicates the jjj_th constraint
*	       x    - Nvar-dimensional vector of parameters
*	       
*     output:  gj   - the jjj_th constraint
*

      INTEGER Nvar,jjj, Ntemp2
      PARAMETER (Ntemp2 = 8)
      REAL*8 x(*),gj, Coeff(Ntemp2+3), umin, umax, Temp
      COMMON Coeff


      DO 628 I = 1, Nvar
         Coeff(I)=x(I)
628   CONTINUE

*     Maximum temperature allowed
      umax=32.3D0
*     Minimum temperature allowed
      umin=22.0D0

      gj=umin-Temp(160.0D0)

*      IF(jjj.LE.Ntemp2) THEN
*         gj=Temp(160.0D0/DFLOAT(Ntemp2)*DFLOAT(jjj))-umax
*      ELSE
*         gj=umin-Temp(160.0D0/DFLOAT(Ntemp2)*DFLOAT(jjj-Ntemp2))
*      ENDIF

*	print*,gj

      RETURN
      END
****************************************************************

      REAL*8 FUNCTION Temp(time)

*     Crystallizer temperature setpoint profile for the
*     simulation of a batch cooling crystallizer
*
*     input:   time - minutes
*     output:  Temp - temperature in  degrees Centigrade

      INTEGER I, J, Ntemp3
      PARAMETER(Ntemp3 = 8)
      REAL*8 time, interval, sum
      REAL*8 Coeff(Ntemp3+3)
      COMMON Coeff

      interval = DFLOAT(160/Ntemp3)
      sum=0.0D0

         
      DO 2666 I = 1, (Ntemp3-1)
	IF(time.LE.(DFLOAT(I)*interval)) THEN
	   DO 2667 J = 1, (I-1)
	      sum=sum+Coeff(J)
2667       CONTINUE
           Temp=32.0D0+sum*interval+
     &		Coeff(I)*(time-DFLOAT(I-1)*interval)
           RETURN
        ENDIF
2666  CONTINUE

      DO 2668 I = 1, (Ntemp3-1)
	 sum=sum+Coeff(I)
2668  CONTINUE
      Temp=32.0D0+sum*interval+Coeff(Ntemp3)*
     &		(time-DFLOAT(Ntemp3-1)*interval)
 
      RETURN
      END


****************************************************************
      SUBROUTINE MOMENTS(NEQ,T,Y,Yprime)
      INTEGER NEQ, I, J, K, nr
      INTEGER NTHETA, NU
      REAL*8 T, Y(NEQ), Yprime(NEQ)
      REAL*8 r0, alpha, mu00, kg, g, kb, b
      REAL*8 Csat, birth, growth, Temp
      REAL*8 JACOBIAN(6,6), W(6,4)
      REAL*8 WPRIME(6,4), F_THETA(6,4)
*      real randnum 
*      external rnun

      COMMON /EXP_DATA/r0, alpha, mu00
      COMMON /GROWTH_DATA/kg, g
      COMMON /BIRTH_DATA/kb, b
            NTHETA=4
      NU=6



      nr = 1
*      call rnun(nr,randnum)
*      if (randnum .lt. 0.001) then
*         write(999,*)  ' T = ', T 
*         write(999,*) ' Y= ', Y
*      end if


*Moments 
*     d(mu0(t))/dt, # of particles/g solvent/minute
      Yprime(1)=birth(Y(6),Csat(Temp(T)),Y(4))
*     d(mu1(t))/dt, microns/g solvent/minute
      Yprime(2)=growth(Y(6),Csat(Temp(T)))*Y(1)+
     &     birth(Y(6),Csat(Temp(T)),Y(4))*r0
*     d(mu2(t))/dt, microns^2/g solvent/minute
      Yprime(3)=2.0D0*growth(Y(6),Csat(Temp(T)))*Y(2)+
     &     birth(Y(6),Csat(Temp(T)),Y(4))*r0**2
*     d(mu3(t))/dt, microns^3/g solvent/minute
      Yprime(4)=3.0D0*growth(Y(6),Csat(Temp(T)))*Y(3)+
     &     birth(Y(6),Csat(Temp(T)),Y(4))*r0**3
*     d(mu4(t))/dt, microns^4/g solvent/minute
      Yprime(5)=4.0D0*growth(Y(6),Csat(Temp(T)))*Y(4)+
     &     birth(Y(6),Csat(Temp(T)),Y(4))*r0**4
*Mass balance
*     d(conc(t))/dt, g solute/g solvent/minute
      Yprime(6)=-alpha*(3*growth(Y(6),Csat(Temp(T)))*Y(3)+
     &     birth(Y(6),Csat(Temp(T)),Y(4))*r0**3)
*Moments for seed crystals only
*     d(mu'1(t)/dt), microns/g solvent/minute
      Yprime(7)=growth(Y(6),Csat(Temp(T)))*mu00
*     d(mu'2(t)/dt), microns^2/g solvent/minute
      Yprime(8)=2.0D0*growth(Y(6),Csat(Temp(T)))*Y(7)
*     d(mu'2]3(t)/dt), microns^3/g solvent/minute
      Yprime(9)=3.0D0*growth(Y(6),Csat(Temp(T)))*Y(8)

      DO 203 I = 1 , NU
	DO 204 J = 1 , NU
	   JACOBIAN(I,J)=0.0D0
204     CONTINUE
203   CONTINUE


*The following equations assume r0 = 0 (nucleation crystal size)
      JACOBIAN(1,4)=birth(Y(6),Csat(Temp(T)),Y(4))/Y(4)
      JACOBIAN(1,6)=b*birth(Y(6),Csat(Temp(T)),Y(4))/
     &			(Y(6)-Csat(Temp(T)))
      JACOBIAN(2,1)=growth(Y(6),Csat(Temp(T)))
      JACOBIAN(2,6)=g*growth(Y(6),Csat(Temp(T)))*Y(1)/
     &			(Y(6)-Csat(Temp(T)))
      JACOBIAN(3,2)=2.0D0*growth(Y(6),Csat(Temp(T)))
      JACOBIAN(3,6)=2.0D0*g*growth(Y(6),Csat(Temp(T)))*Y(2)/
     &			(Y(6)-Csat(Temp(T)))
      JACOBIAN(4,3)=3*growth(Y(6),Csat(Temp(T)))
      JACOBIAN(4,6)=3.0D0*g*growth(Y(6),Csat(Temp(T)))*Y(3)/
     &			(Y(6)-Csat(Temp(T)))
      JACOBIAN(5,4)=4*growth(Y(6),Csat(Temp(T)))
      JACOBIAN(5,6)=4.0D0*g*growth(Y(6),Csat(Temp(T)))*Y(4)/
     &			(Y(6)-Csat(Temp(T)))
      JACOBIAN(6,3)=-3.0D0*alpha*growth(Y(6),Csat(Temp(T)))
      JACOBIAN(6,6)=-3.0D0*alpha*g*growth(Y(6),Csat(Temp(T)))*Y(3)
     &			/(Y(6)-Csat(Temp(T)))


      K=10
      DO 213 I =1 , NU
	DO 214 J = 1, NTHETA
	    W(I,J)=Y(K)
            K=K+1
214	CONTINUE
213   CONTINUE

      DO 223 I = 1 , NU
         DO 224 J = 1 , NTHETA
            F_THETA(I,J)=0.0D0
224      CONTINUE
223   CONTINUE


*Again, the following equations assume r0 = 0

      F_THETA(1,3)=birth(Y(6),Csat(Temp(T)),Y(4))*
     &		DLOG(DABS((Y(6)-Csat(Temp(T)))/Csat(Temp(T))))
      F_THETA(1,4)=birth(Y(6), Csat(Temp(T)),Y(4))
      F_THETA(2,1)=Y(1)*growth(Y(6),Csat(Temp(T)))*
     &		DLOG(DABS((Y(6)-Csat(Temp(T)))/Csat(Temp(T))))
      F_THETA(2,2)=Y(1)*growth(Y(6),Csat(Temp(T)))
      F_THETA(3,1)=2.0D0*Y(2)*growth(Y(6),Csat(Temp(T)))*
     &          DLOG(DABS((Y(6)-Csat(Temp(T)))/Csat(Temp(T))))
      F_THETA(3,2)=2.0D0*Y(2)*growth(Y(6),Csat(Temp(T)))
      F_THETA(4,1)=3.0D0*Y(3)*growth(Y(6),Csat(Temp(T)))*
     &          DLOG(DABS((Y(6)-Csat(Temp(T)))/Csat(Temp(T))))
      F_THETA(4,2)=3.0D0*Y(3)*growth(Y(6),Csat(Temp(T)))
      F_THETA(5,1)=4.0D0*Y(4)*growth(Y(6),Csat(Temp(T)))*
     &          DLOG(DABS((Y(6)-Csat(Temp(T)))/Csat(Temp(T))))
      F_THETA(5,2)=4.0D0*Y(4)*growth(Y(6),Csat(Temp(T)))
      F_THETA(6,1)=-3.0D0*alpha*Y(3)*growth(Y(6),Csat(Temp(T)))*
     &          DLOG(DABS((Y(6)-Csat(Temp(T)))/Csat(Temp(T))))
      F_THETA(6,2)=-3.0D0*alpha*Y(3)*growth(Y(6),Csat(Temp(T)))


*Sensitivity Equation:   W' = J W + d f/d theta
*where
* 			 d u/ d t = f(t,u;theta)     (solved above)
* 			 W =  d u /d theta           (unknown)
* 			 J = d f / du                (Jacobian matrix)

      DO 101 I = 1,NU
	DO 102 J = 1,NTHETA
           WPRIME(I,J)=F_THETA(I,J)
102     CONTINUE
101   CONTINUE

      DO 521 I = 1,NU
	DO 522 J = 1,NTHETA
	   DO 523 K = 1,NU
             WPRIME(I,J)=WPRIME(I,J)+JACOBIAN(I,K)*W(K,J)
523        CONTINUE
522     CONTINUE
521   CONTINUE

      K=10	
      DO 243 I = 1 , NU
         DO 244 J = 1 , NTHETA
		Yprime(K)=WPRIME(I,J)
		K=K+1
244	 CONTINUE
243   CONTINUE

      RETURN
      END

****************************************************************

      SUBROUTINE MOMENTSJ(NEQ,T,Y,DYPDY)
      INTEGER NEQ
      REAL*8 T,Y(NEQ),DYPDY(NEQ,*)

      RETURN
      END
****************************************************************

      REAL*8 FUNCTION Csat(T)

*     saturation concentration for the simulation of a
*     cooling batch crystallizer (potassium nitrate-water)
*     system, from Appendix C in Miller
*
*     input:  T - temperature (20-40 degree Centigrade)
*     output: Csat - saturation concentration 
*                    (g KNO3/g water)

      REAL*8 T

      Csat=0.1286D0+0.00588D0*T+0.0001721D0*T**2.0D0

      RETURN
      END
****************************************************************


      REAL*8 FUNCTION growth(conc, concs)

*     growth rate for the simulation of a cooling batch
*     crystallizer
*     
*     arguments:  conc - solute concentration
*                 concs - saturation concentration
*     non-argument input: kg, g kinetic rate parameters
*     output: growth - growth rate

      REAL*8 conc, concs, kg, g
      COMMON /GROWTH_DATA/kg, g

      growth=kg*((conc-concs)/concs)**g

      RETURN
      END
************************************************************

      REAL*8 FUNCTION birth(conc, concs, m3)

*     birthth rate for the simulation of a cooling batch
*     crystallizer
*
*     arguments:  conc - solute concentration
*                 concs - saturation concentration
*                 m3 - 3rd moment
*     non-argument input: kb, b kinetic rate parameters
*     output: birth - birth rate

      REAL*8 conc, concs, m3, kb, b
      COMMON /BIRTH_DATA/kb, b

      birth=kb*((conc-concs)/concs)**b*m3*(1.0D-4)**3.0D0

      RETURN
      END



⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -