📄 optexpsun.f
字号:
* Copyright c 1998-2002 The Board of Trustees of the University of Illinois
* All rights reserved.
* Developed by: Large Scale Systems Research Laboratory
* Professor Richard Braatz, Director* Department of Chemical Engineering* University of Illinois
* http://brahms.scs.uiuc.edu
* * Permission hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal with the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimers.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimers in the documentation and/or other materials
* provided with the distribution.
* 3. Neither the names of Large Scale Research Systems Laboratory,
* University of Illinois, nor the names of its contributors may
* be used to endorse or promote products derived from this
* Software without specific prior written permission.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* optexpsun.f
*
*
* This program calculates the optimum temperature profile
* and initial seed distribution for optimum experimental
* design. The temperature profile is formed by piecewise
* linear trajectories (See the subroutine Temp). The
* following parameters (in the given subroutine) should be
* set to the number of discretizations (i.e. the number of
* linear trajectories):
*
* Subroutine/Program Parameter
* ------------------ ---------
* Main ntemp
* FCN Ntemp1
* cntr Ntemp2
* Temp Ntemp3
*
* The the initial seed distribution is characterized
* by the total mass, mean size, and width of the distribution.
*
* Parameter inputs are growth and nucleation
* kinetic parameters (g, kg, b, and kb)
*
* The optimization problem is solved using the sequential
* quadratic program subroutine FFSQP by Jian L. Zhou, Andre L.
* Tits, and C.T. Lawrence. FFSQP and the attached subroutines
* are given below.
*
*
* Date: July 6, 1998
* Authors: Serena H. Chung and Richard D. Braatz
* Department of Chemical Engineering
* University of Illinois at Urbana-Champaign
*
************************************************************************
PROGRAM MAIN
* The main program initializes the variables used by the
* FFSQP subroutine. Explanation of the variables is given
* in the FFSQP subroutine, except of ntemp, which is the number of
* temperature discretization. After initialization the program
* calls the FFSQP subroutine to solve the nonlinear constrained
* optimization problem.
INTEGER nparam, nf, nineqn, nineq, neqn, neq, iwsize, nwsize
INTEGER mode, iprint,miter
INTEGER inform, ntemp
PARAMETER(ntemp = 8, nparam=ntemp+3,nf=1,
& nineq=1, neq=0)
PARAMETER(mode=100,miter=10000)
PARAMETER(iwsize=6*nparam+8*(nineq+neq)+7*(nf)+30)
PARAMETER(nwsize=4*nparam**2+5*(nineq+neq)*nparam+
& 3*(nf)*nparam+
& 26*(nparam+nf)+45*(nineq+neq)+100)
INTEGER iw(iwsize)
INTEGER I
REAL*8 bigbnd, eps, epseqn, udelta
REAL*8 x(nparam), bl(nparam), bu(nparam)
REAL*8 f(nf),g(nineq+neq),w(nwsize)
REAL*8 scale(nparam)
EXTERNAL FCN,cntr,grobfd,grcnfd
bigbnd=1.0D12
eps=1.0D-8
epseqn=0.0D0
udelta=0.0D0
iprint=3
nineqn=0
neqn=0
* Initial guess:
* x(1) to x(ntemp) are the slopes of the linear pieces for the
* the temperature profile. x(ntemp+1) is the total mass of seed
* in grams. x(ntemp+2) is the first moment of the seed distribution
* in micron/g solvent. x(ntemp+3) is the width (in microns) of the
* domain of the crystal size distribution function.
x(1) = -1.0000000000000D-01
x(2) = 2.6636175466309D-33
x(3) = -1.0000000000000D-01
x(4) = -1.0000000000000D-01
x(5) = -1.0000000000000D-01
x(6) = -1.0000000000000D-01
x(7) = 4.0325592487296D-34
x(8) = 4.0325592487296D-34
x(9) = 5.0D0
x(10) = 600.0D0
x(11) = 95.0D0
*Scaling factors for the parameters
DO 202 I = 1, ntemp
202 scale(I)=1.0D0
scale(ntemp+1)=1.0D-3
scale(ntemp+2)=1.0D-3
scale(ntemp+3)=1.0D0
DO 201 I = 1, nparam
201 x(I)=scale(I)*x(I)
* Lower bound for the parameter:
DO 666 I = 1, ntemp
666 bl(I)=-0.1D0
bl(ntemp+1)=5.0D0*scale(ntemp+1)
bl(ntemp+2)=5.0D0*scale(ntemp+2)
bl(ntemp+3)=5.0D0*scale(ntemp+3)
* Upper bound for the parameters:
DO 667 I = 1, ntemp
667 bu(I)=0.0D0
bu(ntemp+1)=110000.0D0*scale(ntemp+1)
bu(ntemp+2)=600.0D0*scale(ntemp+2)
bu(ntemp+3)=95.0D0*scale(ntemp+3)
call FFSQP(nparam,nf,nineqn,nineq,neqn,neq,mode,iprint,
* miter,inform,bigbnd,eps,epseqn,udelta,bl,bu,x,f,g,
* iw,iwsize,w,nwsize,FCN,cntr,grobfd,grcnfd)
PRINT*,'Final Solution'
DO 301 I = 1, nparam
301 PRINT*,x(I)/scale(I)
PRINT*,'objective = ', f
STOP
END
******************************************************************
*
* SUBROUTINE FCN(N,j,x,fj)
*
* N = number of parameters to be determined
* x = vector of length N, parameters to be determined
*
*
* This subroutine simulates the operation of an industrial
* crystallizer scaled-up from the experimental batch cooling
* crystallizer described in S. M. Miller's Ph.D. thesis
* published at the University of Texas at Austin in 1993.
*
*
* The following subroutines are required for FCN:
*
* Temp
* MOMENTS
* MOMENTSJ
* Csat
* growth
* birth
*
SUBROUTINE FCN(Nvar,jjj,x,fj)
INTEGER Nvar,jjj,Ntemp1
INTEGER NSTEP, NEQ, MXPARM, NTHETA, NU
PARAMETER (NSTEP=161,NEQ=33,MXPARM=50,NTHETA=4, NU=6)
PARAMETER (Ntemp1 = 8)
INTEGER Norder, LDA, LDB, IPATH
PARAMETER(Norder=3, LDA=3, LDB=3,IPATH=1)
INTEGER I, J, K, M, NNN
REAL*8 x(*), fj
REAL*8 Coeff(Ntemp1+3)
REAL*8 T, Y(NEQ)
REAL*8 F(2*(NSTEP-1), NTHETA), FTVF(NTHETA, NTHETA)
REAL*8 FTV(NTHETA,2*(NSTEP-1))
REAL*8 delt, const1
REAL*8 mu00, Msolv
REAL*8 cell_length, kv, ka, densityc, densitys
REAL*8 r0, alpha, g, kg, b, kb
REAL*8 moment0(NSTEP), moment1(NSTEP), moment2(NSTEP)
REAL*8 moment3(NSTEP), moment4(NSTEP)
REAL*8 time (NSTEP), concentration(NSTEP), seed_moment1(NSTEP)
REAL*8 seed_moment2(NSTEP), seed_moment3(NSTEP)
REAL*8 transmittance(NSTEP)
REAL*8 temperature(NSTEP), relsatn(NSTEP)
REAL*8 Temp, Csat, detFTVF
REAL*8 derivtheta(NSTEP,NU,NTHETA)
REAL*8 derivIg(NSTEP), derivconcg(NSTEP)
REAL*8 derivIlnkg(NSTEP),derivconclnkg(NSTEP)
REAL*8 derivIb(NSTEP), derivIlnkb(NSTEP)
REAL*8 derivconcb(NSTEP), derivconclnkb(NSTEP)
REAL*8 sigma_trans, sigma_conc
REAL*8 AA(3,3), BB(3), gamma(3), lmin, lmax
*lsodes' parameters
INTEGER itol, iopt, itask, istate, mf
INTEGER lrw, liw, iwork(100)
REAL*8 rtol, atol, rwork(1800)
EXTERNAL MOMENTS, MOMENTSJ, DIVPAG, DEVCSF, DLINRG
COMMON /GROWTH_DATA/kg, g
COMMON /BIRTH_DATA/kb, b
COMMON /EXP_DATA/r0, alpha, mu00
COMMON Coeff
DO 628 I = 1, Nvar
Coeff(I)=X(I)
628 CONTINUE
*Simulation parameters
* controller time step in minutes
delt = 1.0D0
* noise for transmittance measurement
sigma_trans=0.009D0
* noise for concentration measurement
sigma_conc=0.0005D0
*Parameters for experimental set-up
* cell length for spectrophotometer in millimeter
* This was modified from that in Miller's thesis because
* his value (2.0) did not agree with his simulation results
cell_length=1.77D0
* mass of solvent in grams, converted from 2000 gallons
Msolv=7.57D6
* volume shape factor (Appendix C in Miller)
kv=1.0D0
* area shape factor (Appendix C in Miller)
ka=6.0D0
* heat transfer coefficient multiplied by surface area
* in calorie/minute/degree C
* density of solvent in g/cm^3 (solvent is water)
densitys=1.0D0
* density of crystal in g/cm^3 (Appendix C in Miller)
densityc=2.11D0
* seed size at nucleation
r0=0.0D0
* crystal density*volume shape factor,
* in gram crystal/micron^3/particle
* (alpha*L^3=mass of particle)
alpha=kv*densityc*(1.0D-4)**3
*Initial conditions
* initial concentration, g/g solvent
concentration(1) = 0.493D0
*
* The initial moments were computed using the following
* population density function:
*
* f_0(L)= aL^2 + b*L + c
*
* The distribution function is assumed to be symmetrical
* with the peak at L_bar. The function is equal to zero
* at L=L_bar-w/2 and L=L_bar+w/2, where w is the width
* paramter. In the program THETA_(Ntemp1+1) is the total
* seed, THETA(Ntemp1+2) is L_bar, and THETA_T(Ntemp1+3)
* is the width. Given the total mass, L_bar, and width w,
* the coefficient a, b, and c can be calcuted from the
* following system of equlations. Let
*
* lmin = L_bar - w/2
* lmax = L_bar + w/2
* mass = total seed mass
*
* Then
*
* (lmax^6-lmin^6)/6 a + (lmax^5-lmin^5)/5 b + (lmax^4-lmin^4)/4 c =
* mass/(mass_solvent*crystal_density)
*
* lmax^2 a + lmax b + c = 0
* lmin^2 a + lmax b + c = 0
*
* Note: In the implementation, the first equation is scaled.
*
lmin = x(Ntemp1+2)*1.0D3-
& x(Ntemp1+3)*(1.0D-2)*x(Ntemp1+2)*1.0D3
lmax = x(Ntemp1+2)*1.0D3+
& x(Ntemp1+3)*(1.0D-2)*x(Ntemp1+2)*1.0D3
* print*,x(Ntemp1+1),x(Ntemp1+2),x(Ntemp1+3)
* print*,lmin, lmax
AA(1,1) = (lmax**6-lmin**6)/6.0D0/1.0D12
AA(1,2) = (lmax**5-lmin**5)/5.0D0/1.0D12
AA(1,3) = (lmax**4-lmin**4)/4.0D0/1.0D12
AA(2,1) = lmin**2
AA(2,2) = lmin
AA(2,3) = 1.0D0
AA(3,1) = lmax**2
AA(3,2) = lmax
AA(3,3) = 1.0D0
BB(1)=x(Ntemp1+1)*1.0D3/
& (Msolv*densityc)*(1.0D4)**3/1.0D12
BB(2)=0.0D0
BB(3)=0.0D0
* print*,AA(1,1),AA(1,2),AA(1,3)
* print*,AA(2,1),AA(2,2),AA(2,3)
* print*,AA(3,1),AA(3,2),AA(3,3)
CALL DLSARG (Norder, AA, LDA, BB, IPATH, gamma)
* print*,gamma(1), gamma(2), gamma(3)
* initial zeroth moment, number of particle/g solvent
mu00 = gamma(1)*(lmax**3-lmin**3)/3.0D0+
& gamma(2)*(lmax**2-lmin**2)/2.0D0+
& gamma(3)*(lmax-lmin)
moment0(1)= mu00
* initial first moment, micron/g solvent
moment1(1) = gamma(1)*(lmax**4-lmin**4)/4.0D0+
& gamma(2)*(lmax**3-lmin**3)/3.0D0+
& gamma(3)*(lmax**2-lmin**2)/2.0D0
seed_moment1(1)=moment1(1)
* initia1 second moment, micron^2/g solvent
moment2(1) = gamma(1)*(lmax**5-lmin**5)/5.0D0+
& gamma(2)*(lmax**4-lmin**4)/4.0D0+
& gamma(3)*(lmax**3-lmin**3)/3.0D0
seed_moment2(1)=moment2(1)
* initial third moment, micron^3/g solvent
moment3(1) = gamma(1)*(lmax**6-lmin**6)/6.0D0+
& gamma(2)*(lmax**5-lmin**5)/5.0D0+
& gamma(3)*(lmax**4-lmin**4)/4.0D0
seed_moment3(1)=moment3(1)
* print*,moment3(1)*Msolv*densityc*(1.0e-12)
* print*,THETA_T(Ntemp1+1)
* initial fourth moment, micron^4/g solvent
moment4(1) = gamma(1)*(lmax**7-lmin**7)/7.0D0+
& gamma(2)*(lmax**6-lmin**6)/6.0D0+
& gamma(3)*(lmax**5-lmin**5)/5.0D0
* initial relative supersaturation
relsatn(1)=(concentration(1)-Csat(Temp(0.0D0)))/
& Csat(Temp(0.0D0))
* initial transmittance measurement
transmittance(1)=DEXP(-ka/2D0*cell_length/10.D0*moment2(1)*
& (densitys*(1.D-4)**2.D0))
* print*,moment0(1)
* print*,moment1(1)
* print*,moment2(1)
* print*,moment3(1)
* print*,moment4(1)
* initial d I/dg
derivIg(1)=0.0D0
* initial d conc/dg
derivconcg(1) = 0.0D0
* initial d I/ d lnkg
derivIlnkg(1)=0.0D0
* initial d conc/d lnkg
derivconclnkg(1) = 0.0D0
* initial d I/db
derivIb(1)=0.0D0
* initial d conc/db
derivconcb(1) = 0.0D0
* initial d I/ d lnkb
derivIlnkb(1)=0.0D0
* initial d conc/d lnkb
derivconclnkb(1) = 0.0D0
* Other initial conditions for derivatives wrt to theta
DO 163 I = 1 , NU
DO 164 J = 1 , NTHETA
derivtheta(1,I,J)=0.0D0
164 CONTINUE
163 CONTINUE
*Growth and nucleation kinetic parameters (Table 4.6 in Miller)
* (dimensionaless)
g=1.32D0
* (mirons/minute)
kg=DEXP(8.849D0)
* (dimensionless)
b=1.78D0
* (number of particles/cm^3/minute)
* (the units have been corrected from that reported in
* Table 3.1 in Miller)
kb=DEXP(17.142D0)
*Simulation parameters
*********************************************************
mf=222
itask=1
istate =1
iopt=0
lrw=3800
liw=200
rtol=1.0d-11
atol=1.0d-10
itol=1
***********************************************************
time(1)=0.0D0
T=0.0D0
DO 1200 I=1,(NSTEP-1)
temperature(I)=Temp(T)
Y(1)=moment0(I)
Y(2)=moment1(I)
Y(3)=moment2(I)
Y(4)=moment3(I)
Y(5)=moment4(I)
Y(6)=concentration(I)
Y(7)=seed_moment1(I)
Y(8)=seed_moment2(I)
Y(9)=seed_moment3(I)
K = 10
DO 263 M = 1 , NU
DO 264 NNN = 1 , NTHETA
Y(K)=derivtheta(I,M,NNN)
K = K + 1
264 CONTINUE
263 CONTINUE
* Write(*,*)Coeff(1),Coeff(2)
CALL lsodes ( MOMENTS,NEQ,Y,T,T+1,itol,rtol,
& atol,itask,istate,iopt,
& rwork,lrw,iwork,liw,MOMENTSJ, mf )
moment0(I+1)=Y(1)
moment1(I+1)=Y(2)
moment2(I+1)=Y(3)
moment3(I+1)=Y(4)
moment4(I+1)=Y(5)
concentration(I+1)=Y(6)
seed_moment1(I+1)=Y(7)
seed_moment2(I+1)=Y(8)
seed_moment3(I+1)=Y(9)
relsatn(I+1)=(Y(6)-Csat(Temp(T)))/Csat(Temp(T))
transmittance(I+1)=DEXP(-ka/2.0D0*cell_length/10.0D0*
& moment2(I+1)*(densitys*(1.0D-4)**2.D0))
time(I+1)=T
K = 10
DO 363 M = 1 , NU
DO 364 NNN = 1 , NTHETA
derivtheta(I+1,M,NNN)=Y(K)
K = K + 1
364 CONTINUE
363 CONTINUE
const1=ka/2.D0*cell_length/10.0D0*
& densitys*(1.0D-4)**(2.D0)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -