📄 dim1sun.f
字号:
* Copyright c 1998-2002 The Board of Trustees of the University of Illinois
* All rights reserved.
* Developed by: Large Scale Systems Research Laboratory
* Professor Richard Braatz, Director* Department of Chemical Engineering* University of Illinois
* http://brahms.scs.uiuc.edu
* * Permission hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal with the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimers.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimers in the documentation and/or other materials
* provided with the distribution.
* 3. Neither the names of Large Scale Research Systems Laboratory,
* University of Illinois, nor the names of its contributors may
* be used to endorse or promote products derived from this
* Software without specific prior written permission.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* open.f
*
* This program simulates the operation of an industrial
* crystallizer scaled-up from the experimental batch cooling
* crystallizer described in S. M. Miller's Ph.D. thesis
* published at the University of Texas at Austin in 1993.
*
* The purpose of this program is to serve as a benchmark
* optimal control problem. The objective of the optimal
* control problem is to compute a temperature profile that
* optimizes a crystal property of interest (see below).
* The program reads the temperature profile from the
* FORTRAN function Temp. The output of the
* program are plots of the moments, solute concentration,
* relative supersaturation, temperature, and transmittance,
* and values for three common final crystal properties of
* interest: (i) weight mean size, (ii) ratio of nucleated
* crystal mass to seed crystal mass, and (iii) coefficient of
* variance.
*
* The program use functions in IMSL to plot the required plots
*
*
* Parameter inputs are growth and nucleation
* kinetic parameters (g, kg, b, and kb)
*
* Parameter NN: the number of discretizations
* Parameter NEQ: the number of moment equations
*
*
* Date: January 27, 1998
* Authors: Serena H. Chung and Richard D. Braatz
* Department of Chemical Engineering
* University of Illinois at Urbana-Champaign
*
*
*
PROGRAM MAIN
INTEGER NN, NEQ, MXPARM
PARAMETER (NN=161, NEQ=9, MXPARM=50)
INTEGER kfinal, I
INTEGER Norder, LDA, LDB, IPATH
PARAMETER(Norder=3, LDA=3, LDB=3,IPATH=1)
REAL*8 T, Y(NEQ)
REAL*8 delt, tfinal
REAL*8 mu00
REAL*8 cell_length, Msolv, kv, ka, UA, densityc, densitys
REAL*8 r0, alpha, g, kg, b, kb
REAL*8 weight_mean_size, cov, mass_ratio
REAL*8 moment0(NN), moment1(NN), moment2(NN)
REAL*8 moment3(NN), moment4(NN)
REAL*8 time (NN), concentration(NN), seed_moment1(NN)
REAL*8 concentration_measured(NN)
REAL*8 seed_moment2(NN), seed_moment3(NN), transmittance(NN)
REAL*8 temperature(NN), relsatn(NN)
REAL*8 Temp, Csat
REAL*8 betatrans, betaconc
REAL*8 variance_trans, variance_conc,random
REAL*8 AA(3,3), BB(3), gamma(3), lmin, lmax
REAL*8 mass_seed, mean_seed, width
REAL real_time(NN), real_temperature(NN), real_concentration(NN)
REAL real_moment0(NN), real_moment1(NN), real_moment2(NN)
REAL real_moment3(NN), real_transmittance(NN), real_satn(NN)
REAL noise_trans(NN-1), noise_conc(NN-1)
*lsodes' parameters
INTEGER itol, iopt, itask, istate, mf
INTEGER lrw, liw, iwork(1000)
REAL*8 rtol, atol, rwork(5800)
EXTERNAL FCN, FCNJ, DIVPAG,DRNNOR,DLSARG
COMMON /GROWTH_DATA/kg, g
COMMON /BIRTH_DATA/kb, b
COMMON /EXP_DATA/r0, alpha, mu00, UA, Msolv
DO 111 I = 1, (NN-1)
CALL DRNNOR(1,random)
noise_trans(I)=random
111 CONTINUE
DO 112 I = 1, (NN-1)
CALL DRNNOR(1,random)
noise_conc(I)=random
112 CONTINUE
variance_trans=0.0D0
variance_conc=0.0D0
*Simulation parameters
* controller time step in minutes
delt = 1.0D0
* total time step
kfinal=NN
* final time in minutes
tfinal = DFLOAT(NN)*delt
* noise for transmittance measurement
betatrans = 0.009D0
* noise for concentration measurement
betaconc = 0.0005D0
*Parameters for experimental set-up
* cell length for spectrophotometer in millimeter
* This was modified from that in Miller's thesis because
* his value (2.0) did not agree with his simulation results
cell_length=1.77D0
* mass of solvent in grams, converted from 2000 gallons
Msolv=7.57D6
* volume shape factor (Appendix C in Miller)
kv=1.0D0
* area shape factor (Appendix C in Miller)
ka=6.0D0
* heat transfer coefficient multiplied by surface area
* in calorie/minute/degree C
* density of solvent in g/cm^3 (solvent is water)
densitys=1.0D0
* density of crystal in g/cm^3 (Appendix C in Miller)
densityc=2.11D0
* seed size at nucleation
r0=0.0D0
* crystal density*volume shape factor,
* in gram crystal/micron^3/particle
* (alpha*L^3=mass of particle)
alpha=kv*densityc*(1.0D-4)**3
* Total mass of seed crystals (grams)
mass_seed = 230.0D0
* Mean size of the seed crystals (microns)
mean_seed = 196.0D0
* Percent width of the initial seed distribution
width = 6.12D0
*Growth and nucleation kinetic parameters (Table 4.6 in Miller)
* (dimensionaless)
g=1.32D0
* (mirons/minute)
kg=DEXP(8.849D0)
* (dimensionless)
b=1.78D0
* (number of particles/cm^3/minute)
* (the units have been corrected from that reported in
* Table 3.1 in Miller)
kb=DEXP(17.142D0)
*Initial conditions
* initial concentration, g/g solvent
concentration(1) = 0.493D0
concentration_measured(1)=concentration(1)
*
* The initial moments were computed using the following
* population density function:
*
* f_0(L)= aL^2 + b*L + c
*
* The distribution function is assumed to be symmetrical
* with the peak at L_bar. The function is equal to zero
* at L=L_bar-w/2 and L=L_bar+w/2, where w is the width
* paramter. In the program THETA_(Ntemp1+1) is the total
* seed, THETA(Ntemp1+2) is L_bar, and THETA_T(Ntemp1+3)
* is the width. Given the total mass, L_bar, and width w,
* the coefficient a, b, and c can be calcuted from the
* following system of equlations. Let
*
* lmin = L_bar - w/2
* lmax = L_bar + w/2
* mass = total seed mass
*
* Then
*
* (lmax^6-lmin^6)/6 a + (lmax^5-lmin^5)/5 b + (lmax^4-lmin^4)/4 c =
* mass/(mass_solvent*crystal_density)
*
* lmax^2 a + lmax b + c = 0
* lmin^2 a + lmax b + c = 0
*
* Note: In the implementation, the first equation is scaled.
*
lmin = mean_seed-width*(1.0D-2)*mean_seed
lmax = mean_seed+width*(1.0D-2)*mean_seed
AA(1,1) = (lmax**6-lmin**6)/6.0D0/1.0D12
AA(1,2) = (lmax**5-lmin**5)/5.0D0/1.0D12
AA(1,3) = (lmax**4-lmin**4)/4.0D0/1.0D12
AA(2,1) = lmin**2
AA(2,2) = lmin
AA(2,3) = 1.0D0
AA(3,1) = lmax**2
AA(3,2) = lmax
AA(3,3) = 1.0D0
BB(1)=mass_seed/
& (Msolv*densityc)*(1.0D4)**3/1.0D12
BB(2)=0.0D0
BB(3)=0.0D0
CALL DLSARG (Norder, AA, LDA, BB, IPATH, gamma)
* initial zeroth moment, number of particle/g solvent
mu00 = gamma(1)*(lmax**3-lmin**3)/3.0D0+
& gamma(2)*(lmax**2-lmin**2)/2.0D0+
& gamma(3)*(lmax-lmin)
moment0(1)= mu00
* initial first moment, micron/g solvent
moment1(1) = gamma(1)*(lmax**4-lmin**4)/4.0D0+
& gamma(2)*(lmax**3-lmin**3)/3.0D0+
& gamma(3)*(lmax**2-lmin**2)/2.0D0
seed_moment1(1)=moment1(1)
* initia1 second moment, micron^2/g solvent
moment2(1) = gamma(1)*(lmax**5-lmin**5)/5.0D0+
& gamma(2)*(lmax**4-lmin**4)/4.0D0+
& gamma(3)*(lmax**3-lmin**3)/3.0D0
seed_moment2(1)=moment2(1)
* initial third moment, micron^3/g solvent
moment3(1) = gamma(1)*(lmax**6-lmin**6)/6.0D0+
& gamma(2)*(lmax**5-lmin**5)/5.0D0+
& gamma(3)*(lmax**4-lmin**4)/4.0D0
seed_moment3(1)=moment3(1)
* print*,moment3(1)*Msolv*densityc*(1.0e-12)
* print*,THETA_T(Ntemp1+1)
* initial fourth moment, micron^4/g solvent
moment4(1) = gamma(1)*(lmax**7-lmin**7)/7.0D0+
& gamma(2)*(lmax**6-lmin**6)/6.0D0+
& gamma(3)*(lmax**5-lmin**5)/5.0D0
* initial relative supersaturation
relsatn(1)=(concentration(1)-Csat(Temp(0.0D0)))/
& Csat(Temp(0.0D0))
* initial transmittance measurement
transmittance(1)=DEXP(-ka/2D0*cell_length/10D0*moment2(1)*
& (densitys*(1D-4)**2))
WRITE(58,1)g, DLOG(kg)
WRITE(58,1)b, DLOG(kb)
*Simulation parameters
*********************************************************
*
mf=222
itask=1
istate =1
iopt=0
lrw=3800
liw=200
rtol=1.0d-12
atol=1.0d-10
itol=1
******************************************************
*
time(1)=0.0D0
T=0.0D0
DO 1200 I=1,(NN-1)
temperature(I)=Temp(T)
Y(1)=moment0(I)
Y(2)=moment1(I)
Y(3)=moment2(I)
Y(4)=moment3(I)
Y(5)=moment4(I)
Y(6)=concentration(I)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -