⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 conf.f

📁 对工业生产过程结晶过程的一个仿真程序软件包
💻 F
📖 第 1 页 / 共 2 页
字号:
* Copyright c 1998-2002 The Board of Trustees of the University of Illinois
* 		  All rights reserved.
* Developed by:	Large Scale Systems Research Laboratory
*               Professor Richard Braatz, Director*               Department of Chemical Engineering*		University of Illinois
*		http://brahms.scs.uiuc.edu
* * Permission hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal with the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the 
* Software is furnished to do so, subject to the following conditions:
* 		1. Redistributions of source code must retain the above copyright
*		   notice, this list of conditions and the following disclaimers.
*		2. Redistributions in binary form must reproduce the above 
*		   copyright notice, this list of conditions and the following 
*		   disclaimers in the documentation and/or other materials 
*		   provided with the distribution.
*		3. Neither the names of Large Scale Research Systems Laboratory,
*		   University of Illinois, nor the names of its contributors may
*		   be used to endorse or promote products derived from this 
*		   Software without specific prior written permission.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 
* THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*       conf.f
*
*	This program calculates the parameter covariance matrix and 
* 	the variance for each growth and nucleation kinetic 

*     parameter (g, kg, b, and kb).
*
*	This program reads the growth and nucleation 
*     kinetic parameters (g, kg, b, and kb), concentration, and 
*     moments data from data files.
*
*
*       Nset=the number of the data files
*
*       Date:    August 8, 1998
*       Authors: Serena H. Chung and Richard D. Braatz
*                Department of Chemical Engineering
*                University of Illinois at Urbana-Champaign

*	  Modified:March 6, 2000

*	  By:      David L. Ma and Richard D. Braatz

*	  

*	  Modifications were to replace the use of transmittance

*       measurements with moment measurements.
*
*
*



	use MSIMSL
*      PROGRAM MAIN

      INTEGER NSTEP, NEQ, MXPARM, NTHETA, NU,Nsets
      INTEGER npos1, npos2, MSTEP, Cinter, Minter
      PARAMETER (NSTEP=161,NEQ=33,MXPARM=50,NTHETA=4, NU=6)
      PARAMETER (Nsets=1, npos1=12, npos2=8, MSTEP=5)
      PARAMETER (Cinter=1, Minter=30)
      INTEGER I, J, K, M, N,Iteration, I1, L
      INTEGER Norder, LDA, LDB, IPATH
      PARAMETER(Norder=3, LDA=3, LDB=3,IPATH=1)
      REAL*8 T, Y(NEQ)
      REAL*8 F(NU*(NSTEP-1)*Nsets, NTHETA)
      REAL*8 FTVF(NTHETA, NTHETA)
      REAL*8 inv_FTVF(NTHETA,NTHETA)
      REAL*8 FTV(NTHETA,NU*(NSTEP-1)*Nsets)
      REAL*8 delt, tfinal, Msolv
      REAL*8 mu00
      REAL*8 cell_length, kv, ka, densityc, densitys
      REAL*8 r0, alpha, g, kg, b, kb
      REAL*8 moment0(NSTEP), moment1(NSTEP), moment2(NSTEP)
      REAL*8 moment3(NSTEP), moment4(NSTEP)
      REAL*8 time (NSTEP), concentration(NSTEP), seed_moment1(NSTEP)
      REAL*8 seed_moment2(NSTEP), seed_moment3(NSTEP)
      REAL*8 temperature(NSTEP), relsatn(NSTEP)
      REAL*8 Temp, Csat, detFTVF
      REAL*8 derivtheta(NSTEP,NU,NTHETA)
      REAL*8 ConcData(NSTEP-1), Mu0Data(MSTEP), Mu1Data(MSTEP)
      REAL*8 Mu2Data(MSTEP), Mu3Data(MSTEP), Mu4Data(MSTEP)
      REAL*8 conc_variance, mu0_variance, mu1_variance
      REAL*8 mu3_variance, mu4_variance, mu2_variance
      REAL*8 chi_squared
      REAL*8 g_interval, lnkg_interval, b_interval, lnkb_interval
      REAL*8 AA(3,3), BB(3), gamma1(3), lmin, lmax
      REAL*8 mass_seed, mean_seed, width
      CHARACTER*60 file_concen, file_mu


*lsodes' parameters
      
      INTEGER itol, iopt, itask, istate, mf
      INTEGER lrw, liw, iwork(1000)
      REAL*8  rtol, atol, rwork(5800)    

      EXTERNAL FCN, FCNJ

      COMMON /GROWTH_DATA/kg, g
      COMMON /BIRTH_DATA/kb, b 
      COMMON /EXP_DATA/r0, alpha, mu00
      COMMON Iteration


	file_concen='concen_data'

	file_mu='mu_data'
      conc_variance=0.0D0
      mu0_variance=0.0D0
      mu1_variance=0.0D0
      mu2_variance=0.0D0
      mu3_variance=0.0D0
      mu4_variance=0.0D0

	OPEN(UNIT=90, FILE='param.dat', FORM='FORMATTED',

     &     ACCESS='SEQUENTIAL', STATUS='UNKNOWN')

	READ(90,*)g

	READ(90,*)kg

	READ(90,*)b

	READ(90,*)kb

	kg=DEXP(kg)

	kb=DEXP(kb)

	
	print*, "running"
      DO 787 Iteration = 1, Nsets

*Simulation parameters
*     controller time step in minutes
      delt = 1.0D0
*     final time in minutes
      tfinal = DFLOAT(NSTEP)*delt

*Parameters for experimental set-up
*     cell length for spectrophotometer in millimeter
*     This was modified from that in Miller's thesis because
*     his value (2.0) did not agree with his simulation results
      cell_length=1.77D0
*     mass of solvent in grams, converted from 2000 gallons
      Msolv=7.57D6
*     volume shape factor (Appendix C in Miller)
      kv=1.0D0
*     area shape factor (Appendix C in Miller)
      ka=6.0D0
*     heat transfer coefficient multiplied by surface area
*     in calorie/minute/degree C 
*     density of solvent in g/cm^3 (solvent is water)
      densitys=1.0D0
*     density of crystal in g/cm^3 (Appendix C in Miller)
      densityc=2.11D0
*     seed size at nucleation
      r0=0.0D0
*     crystal density*volume shape factor,
*     in gram crystal/micron^3/particle
*     (alpha*L^3=mass of particle)
      alpha=kv*densityc*(1.0D-4)**3

*     Total mass of seed crystals (grams)	
      mass_seed = 230.0D0
*     Mean size of the seed crystals (microns)
      mean_seed = 196.0D0
*     Percent width of the initial seed distribution
      width = 6.12D0


*Growth and nucleation kinetic parameters 
*     (dimensionaless)
*      g = 0.12889594028434D+01
*      g = 0.13151365743328D+01
*      g = 0.13125608981096D+01
*      g = 0.12912359265617D+01
*      g = 0.12993596644840D+01
*     (mirons/minute)
*      kg = DEXP(0.87458112413202D+01)
*      kg = DEXP(0.88354817511395D+01)
*      kg = DEXP(0.88246805512230D+01)
*      kg = DEXP(0.87309813411979D+01)
*      kg = DEXP(0.87620506647544D+01)
*     (dimensionless)
*      b = 0.17519140794580D+01
*      b = 0.17762965268414D+01
*      b = 0.17704343279926D+01
*      b = 0.17465821622552D+01
*      b = 0.17860382260529D+01

*     (number of particles/cm^3/minute) 
*     (the units have been corrected from that reported in
*     Table 3.1 in Miller)
*      kb = DEXP(0.17048465188505D+02)
*      kb = DEXP(0.17137238240957D+02)
*      kb = DEXP(0.17106281255156D+02)
*      kb = DEXP(0.17005247110939D+02)
*      kb = DEXP(0.17179861650138D+02)

*Initial conditions
*     initial concentration, g/g solvent
      concentration(1) = 0.493D0
*
*       The initial moments were computed using the following
*       population density function:
*
*       f_0(L)= aL^2 + b*L + c
*
*	The distribution function is assumed to be symmetrical
*	with the peak at L_bar.  The function is equal to zero 
*	at L=L_bar-w/2 and L=L_bar+w/2, where w is the width 
*	paramter. In the program THETA_(Ntemp1+1) is the total
*	seed, THETA(Ntemp1+2) is L_bar, and THETA_T(Ntemp1+3)
*	is the width.  Given the total mass, L_bar, and width w, 
*	the coefficient a, b, and c can be calcuted from the
*	following system of equlations.  Let
*	
*	lmin = L_bar - w/2
*	lmax = L_bar + w/2
*	mass = total seed mass 
*
*	Then
*
*	(lmax^6-lmin^6)/6 a + (lmax^5-lmin^5)/5 b + (lmax^4-lmin^4)/4 c =
*	mass/(mass_solvent*crystal_density)
*
*	lmax^2 a + lmax b + c = 0
*	lmin^2 a + lmax b + c = 0
*
*	Note: In the implementation, the first equation is scaled.
*

      lmin = mean_seed-width*(1.0D-2)*mean_seed
      lmax = mean_seed+width*(1.0D-2)*mean_seed

      AA(1,1) = (lmax**6-lmin**6)/6.0D0/1.0D12 
      AA(1,2) = (lmax**5-lmin**5)/5.0D0/1.0D12
      AA(1,3) = (lmax**4-lmin**4)/4.0D0/1.0D12
      AA(2,1) = lmin**2
      AA(2,2) = lmin
      AA(2,3) = 1.0D0
      AA(3,1) = lmax**2
      AA(3,2) = lmax
      AA(3,3) = 1.0D0
      BB(1)=mass_seed/
     &		(Msolv*densityc)*(1.0D4)**3/1.0D12
      BB(2)=0.0D0
      BB(3)=0.0D0
      CALL DLSARG (Norder, AA, LDA, BB, IPATH, gamma1)

*     initial zeroth moment, number of particle/g solvent
      mu00 = gamma1(1)*(lmax**3-lmin**3)/3.0D0+
     &	     gamma1(2)*(lmax**2-lmin**2)/2.0D0+
     &	     gamma1(3)*(lmax-lmin)
      moment0(1)= mu00
*     initial first moment, micron/g solvent
      moment1(1) = gamma1(1)*(lmax**4-lmin**4)/4.0D0+
     &		   gamma1(2)*(lmax**3-lmin**3)/3.0D0+
     &	           gamma1(3)*(lmax**2-lmin**2)/2.0D0
      seed_moment1(1)=moment1(1)
*     initia1 second moment, micron^2/g solvent
      moment2(1) = gamma1(1)*(lmax**5-lmin**5)/5.0D0+
     &		   gamma1(2)*(lmax**4-lmin**4)/4.0D0+
     &	           gamma1(3)*(lmax**3-lmin**3)/3.0D0
      seed_moment2(1)=moment2(1)
*     initial third moment, micron^3/g solvent
      moment3(1) = gamma1(1)*(lmax**6-lmin**6)/6.0D0+
     &		   gamma1(2)*(lmax**5-lmin**5)/5.0D0+
     &	           gamma1(3)*(lmax**4-lmin**4)/4.0D0
      seed_moment3(1)=moment3(1)
*	print*,moment3(1)*Msolv*densityc*(1.0e-12)
*	print*,THETA_T(Ntemp1+1)
*     initial fourth moment, micron^4/g solvent
      moment4(1) = gamma1(1)*(lmax**7-lmin**7)/7.0D0+
     &		   gamma1(2)*(lmax**6-lmin**6)/6.0D0+
     &	           gamma1(3)*(lmax**5-lmin**5)/5.0D0

*     initial relative supersaturation
      relsatn(1)=(concentration(1)-Csat(Temp(0.0D0)))/
     &     Csat(Temp(0.0D0))

*     Initial conditions for derivatives wrt to theta
      DO 163 I = 1 , NU
         DO 164 J = 1 , NTHETA
            derivtheta(1,I,J)=0.0D0
164      CONTINUE
163   CONTINUE     


*     Read Data in files
      I1=10+Iteration
      DO  J = 1,NSTEP-1
         WRITE(file_concen(npos1:npos1+1), '(I2)') I1 

	   file_concen = file_concen(1:npos1+1) // '.txt'
         OPEN(UNIT=20, FILE=file_concen, FORM='FORMATTED',
     &        ACCESS='SEQUENTIAL', STATUS='OLD')
         READ(20,*) ConcData(J)	
      ENDDO
      CLOSE(UNIT=20)
      DO J=1,MSTEP
         WRITE(file_mu(npos2:npos2+1), '(I2)') I1 

	   file_mu = file_mu(1:npos2+1) // '.txt'
         OPEN(UNIT=20, FILE=file_mu, FORM='FORMATTED',
     &        ACCESS='SEQUENTIAL', STATUS='OLD')
	 READ(20,*) Mu0Data(J), Mu1Data(J), Mu2Data(J),
     &		    Mu3Data(J), Mu4Data(J)
      ENDDO 
      CLOSE(UNIT=20)


*Simulation parameters
*********************************************************
*
      mf=222
      itask=1
      istate =1
      iopt=0
      lrw=3800
      liw=200
      rtol=1.0d-11
      atol=1.0d-10
      itol=1
******************************************************
*
      time(1)=0.0D0
      T=0.0D0    
      L=1
        
      DO 1200 I=1,(NSTEP-1)
	 temperature(I)=Temp(T)
         Y(1)=moment0(I)
         Y(2)=moment1(I)
         Y(3)=moment2(I)
         Y(4)=moment3(I)
         Y(5)=moment4(I)
         Y(6)=concentration(I)
         Y(7)=seed_moment1(I)
         Y(8)=seed_moment2(I)
         Y(9)=seed_moment3(I)
         K = 10
         DO 263 M = 1 , NU
            DO 264 N = 1 , NTHETA
               Y(K)=derivtheta(I,M,N)
	       K = K + 1
264         CONTINUE
263      CONTINUE


        CALL lsodes ( FCN,NEQ,Y,T,T+Cinter,itol,rtol,
     &          atol,itask,istate,iopt, 
     &           rwork,lrw,iwork,liw, FCNJ, mf )
     
         moment0(I+1)=Y(1)
         moment1(I+1)=Y(2)
         moment2(I+1)=Y(3)
         moment3(I+1)=Y(4)
         moment4(I+1)=Y(5)
         concentration(I+1)=Y(6)
         seed_moment1(I+1)=Y(7)
         seed_moment2(I+1)=Y(8)
         seed_moment3(I+1)=Y(9)
         relsatn(I+1)=(Y(6)-Csat(Temp(T)))/Csat(Temp(T))
         time(I+1)=T
         K = 10
         DO 363 M = 1 , NU
            DO 364 N = 1 , NTHETA
               derivtheta(I+1,M,N)=Y(K)
	       F((NSTEP-1)*(Iteration-1)+Nu*(I-1)+M,N)=Y(k)
	       K = K + 1
364         CONTINUE
363      CONTINUE
	
	 
	 
         conc_variance=conc_variance+
     &		(ConcData(I)-concentration(I+1))**2.0D0

	 IF ((int(I*Cinter/Minter/L).EQ.1) .AND. (L .LE. MSTEP)) THEN
            mu0_variance=mu0_variance+
     &		(Mu0Data(L)-moment0(I+1))**2.0D0
            mu1_variance=mu1_variance+
     &		(Mu1Data(L)-moment1(I+1))**2.0D0

            mu2_variance=mu2_variance+
     &		(Mu2Data(L)-moment2(I+1))**2.0D0

            mu3_variance=mu3_variance+
     &		 (Mu3Data(L)-moment3(I+1))**2.0D0
            mu4_variance=mu4_variance+
     &		 (Mu4Data(L)-moment4(I+1))**2.0D0
	    L=L+1
         END IF
1200  CONTINUE
787   CONTINUE

1     FORMAT(2(F13.6,3x))
2     FORMAT(I1)
3     FORMAT(2(E16.6,3x),2(F16.6,3x))

      mu0_variance=mu0_variance/DFLOAT((NSTEP-1)*Nsets)
      mu1_variance=mu1_variance/DFLOAT((NSTEP-1)*Nsets)
      mu2_variance=mu2_variance/DFLOAT((NSTEP-1)*Nsets)
      mu3_variance=mu3_variance/DFLOAT((NSTEP-1)*Nsets)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -