📄 optconsun.f
字号:
* Copyright c 1998-2002 The Board of Trustees of the University of Illinois
* All rights reserved.
* Developed by: Large Scale Systems Research Laboratory
* Professor Richard Braatz, Director* Department of Chemical Engineering* University of Illinois
* http://brahms.scs.uiuc.edu
* * Permission hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal with the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimers.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimers in the documentation and/or other materials
* provided with the distribution.
* 3. Neither the names of Large Scale Research Systems Laboratory,
* University of Illinois, nor the names of its contributors may
* be used to endorse or promote products derived from this
* Software without specific prior written permission.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* optcon.f
*
*
* This program calculates the optimum temperature profile
* and initial seed distribution for optimizing a final time
* crystal property of interest. The temperature profile is
* formed by piecewise linear trajectories (See the subroutine
* Temp). The following parameters (in the given subroutine)
* should be set to the number of discretizations (i.e. the
* number of linear trajectories):
*
* Subroutine/Program Parameter
* ------------------ ---------
* Main ntemp
* FCN Ntemp1
* cntr Ntemp2
* Temp Ntemp3
*
* The the initial seed distribution is characterized
* by the total mass, mean size, and width of the distribution.
*
* Parameter inputs are growth and nucleation
* kinetic parameters (g, kg, b, and kb)
*
* The optimization problem is solved using the sequential
* quadratic program subroutine FFSQP by Jian L. Zhou, Andre L.
* Tits, and C.T. Lawrence. FFSQP and the attached subroutines
* are given below.
*
*
* Date: June 19, 1998
* Authors: Serena H. Chung and Richard D. Braatz
* Department of Chemical Engineering
* University of Illinois at Urbana-Champaign
*
************************************************************************
PROGRAM MAIN
* The main program initializes the variables used by the
* FFSQP subroutine. Explanation of the variables is given
* in the FFSQP subroutine, except of ntemp, which is the number of
* temperature discretization. After initialization the program
* calls the FFSQP subroutine to solve the nonlinear constrained
* optimization problem.
INTEGER nparam, nf, nineqn, nineq, neqn, neq, iwsize, nwsize
INTEGER mode, iprint,miter
INTEGER inform, ntemp
PARAMETER(ntemp = 8, nparam=ntemp+3,nf=1, nineq=2, neq=0)
PARAMETER(mode=100,miter=10000)
PARAMETER(iwsize=6*nparam+8*(nineq+neq)+7*(nf)+30)
PARAMETER(nwsize=4*nparam**2+5*(nineq+neq)*nparam+
& 3*(nf)*nparam+
& 26*(nparam+nf)+45*(nineq+neq)+100)
INTEGER iw(iwsize)
INTEGER I
REAL*8 bigbnd, eps, epseqn, udelta
REAL*8 x(nparam), bl(nparam), bu(nparam)
REAL*8 f(nf),g(nineq+neq),w(nwsize)
REAL*8 scale(nparam)
EXTERNAL FCN,cntr,grobfd,grcnfd
bigbnd=1.0D12
eps=1.0D-6
epseqn=0.0D0
udelta=0.0D0
iprint=2
nineqn=1
neqn=0
* Initial guess:
* x(1) to x(ntemp) are the slopes of the linear pieces for the
* the temperature profile. x(ntemp+1) is the total mass of seed
* in grams. x(ntemp+2) is the first moment of the seed distribution
* in micron/g solvent. x(ntemp+3) is the width (in microns) of the
* domain of the crystal size distribution function.
x(1) = -1.5166629898298D-02
x(2) = -2.0218060663727D-02
x(3) = -2.9765463427082D-02
x(4) = -4.5824907459300D-02
x(5) = -8.7417830856041D-02
x(6) = -1.0000000000000D-01
x(7) = -1.0000000000000D-01
x(8) = -1.0000000000000D-01
x(9) = 20.0D0
x(10) = 5.0D0
x(11) = 5.0D0
*Scaling factors for the parameters
DO 202 I = 1, ntemp
202 scale(I)=1.0D0
scale(ntemp+1)=1.0D-3
scale(ntemp+2)=1.0D-3
scale(ntemp+3)=1.0D0
DO 201 I = 1, nparam
201 x(I)=scale(I)*x(I)
* DATA x/ -0.24679704220759D-01, -0.24679704220759D-01,
* & -0.17028909974573D-33, -0.17028909974573D-33,
* & -0.26141823689473D-01, -0.26141823689473D-01,
* & -0.48379245469584D-01, -0.48379245469584D-01,
* & -0.10000000000000D+00, -0.10000000000000D+00,
* & -0.10000000000000D+00, -0.10000000000000D+00,
* & -0.10000000000000D+00, -0.10000000000000D+00,
* & -0.10000000000000D+00, -0.10000000000000D+00/
* Lower bound for the parameter:
DO 666 I = 1, ntemp
666 bl(I)=-0.1D0
bl(ntemp+1)=5.0D0*scale(ntemp+1)
bl(ntemp+2)=5.0D0*scale(ntemp+2)
bl(ntemp+3)=5.0D0*scale(ntemp+3)
* Upper bound for the parameters:
DO 667 I = 1, ntemp
667 bu(I)=0.0D0
bu(ntemp+1)=110000.0D0*scale(ntemp+1)
bu(ntemp+2)=600.0D0*scale(ntemp+2)
bu(ntemp+3)=95.0D0*scale(ntemp+3)
call FFSQP(nparam,nf,nineqn,nineq,neqn,neq,mode,iprint,
* miter,inform,bigbnd,eps,epseqn,udelta,bl,bu,x,f,g,
* iw,iwsize,w,nwsize,FCN,cntr,grobfd,grcnfd)
PRINT*,'Final Solution'
DO 301 I = 1, nparam
301 PRINT*,x(I)/scale(I)
PRINT*,'objective = ', f
STOP
END
******************************************************************
*
* SUBROUTINE FCN(Nvar,j,THETA_T,function)
*
* Nvar number of parameters
* j indicates the jth function (not
* relevent to the current optimization
* probem)
* THETA_T Nvar-dimensional vector of parameters
* function objective function value
*
*
* This subroutine is a version of the program open.f.
* The subroutine simulates the operation of an industrial
* crystallizer scaled-up from the experimental batch cooling
* crystallizer described in S. M. Miller's Ph.D. thesis
* published at the University of Texas at Austin in 1993.
* The objective function can be any of the three common final
* crystal properties of interest: (i) weight mean size,
* (ii) ratio of nucleated crystal mass to seed crystal mass,
* and (iii) coefficient of variance.
*
* The following subroutines are required for FCN:
*
* Temp
* MOMENTS
* MOMENTSJ
* Csat
* growth
* birth
*
SUBROUTINE FCN(Nvar,j,THETA_T,function)
INTEGER NN, NEQ, MXPARM,Nvar,j, Ntemp1
PARAMETER (NN=161, NEQ=9, MXPARM=50,Ntemp1 = 8)
INTEGER kfinal, I
INTEGER Norder, LDA, LDB, IPATH
PARAMETER(Norder=3, LDA=3, LDB=3,IPATH=1)
REAL*8 T, Y(NEQ)
REAL*8 THETA_T(*), function, Coeff(Ntemp1+3)
REAL*8 delt, tfinal
REAL*8 mu00
REAL*8 cell_length, Msolv, kv, ka, UA, densityc, densitys
REAL*8 r0, alpha, g, kg, b, kb
REAL*8 weight_mean_size, cov, mass_ratio
REAL*8 moment0(NN), moment1(NN), moment2(NN)
REAL*8 moment3(NN), moment4(NN)
REAL*8 time (NN), concentration(NN), seed_moment1(NN)
REAL*8 concentration_measured(NN)
REAL*8 seed_moment2(NN), seed_moment3(NN), transmittance(NN)
REAL*8 temperature(NN), relsatn(NN)
REAL*8 Temp, Csat
REAL*8 AA(3,3), BB(3), gamma(3), lmin, lmax
*lsodes' parameters
INTEGER itol, iopt, itask, istate, mf
INTEGER lrw, liw, iwork(200)
REAL*8 rtol, atol, rwork(3800)
EXTERNAL MOMENTS, MOMENTSJ, DIVPAG,DRNNOF, DLSARG
COMMON /GROWTH_DATA/kg, g
COMMON /BIRTH_DATA/kb, b
COMMON /EXP_DATA/r0, alpha, mu00, UA, Msolv
COMMON Coeff
COMMON concentration
DO 1111 I = 1, Nvar
Coeff(I)=THETA_T(I)
1111 CONTINUE
*Simulation parameters
* controller time step in minutes
delt = 1.0D0
* total time step
kfinal=NN
* final time in minutes
tfinal = DFLOAT(NN)*delt
*Parameters for experimental set-up
* cell length for spectrophotometer in millimeter
* This was modified from that in Miller's thesis because
* his value (2.0) did not agree with his simulation results
cell_length=1.77D0
* mass of solvent in grams, converted from 2000 gallons
Msolv=7.57D6
* volume shape factor (Appendix C in Miller)
kv=1.0D0
* area shape factor (Appendix C in Miller)
ka=6.0D0
* heat transfer coefficient multiplied by surface area
* in calorie/minute/degree C
* density of solvent in g/cm^3 (solvent is water)
densitys=1.0D0
* density of crystal in g/cm^3 (Appendix C in Miller)
densityc=2.11D0
* seed size at nucleation
r0=0.0D0
* crystal density*volume shape factor,
* in gram crystal/micron^3/particle
* (alpha*L^3=mass of particle)
alpha=kv*densityc*(1.0D-4)**3
*Initial conditions
* initial concentration, g/g solvent
concentration(1) = 0.493D0
concentration_measured(1)=concentration(1)
*
* The initial moments were computed using the following
* population density function:
*
* f0(L)= aL^2 + b*L + c
*
* The distribution function is assumed to be symmetrical
* with the peak at L_bar. The function is equal to zero
* at L=L_bar-w/2 and L=L_bar+w/2, where w is the width
* paramter. In the program THETA_(Ntemp1+1) is the total
* seed, THETA(Ntemp1+2) is L_bar, and THETA_T(Ntemp1+3)
* is the width. Given the total mass, L_bar, and width w,
* the coefficient a, b, and c can be calcuted from the
* following system of equlations. Let
*
* lmin = L_bar - w/2
* lmax = L_bar + w/2
* mass = total seed mass
*
* Then
*
* (lmax^6-lmin^6)/6 a + (lmax^5-lmin^5)/5 b + (lmax^4-lmin^4)/4 c =
* mass/(mass_solvent*crystal_density)
*
* lmax^2 a + lmax b + c = 0
* lmin^2 a + lmax b + c = 0
*
* Note: In the implementation, the first equation is scaled.
* Note: L_bar = (first moment)/(zeroth moment)
*
lmin = THETA_T(Ntemp1+2)*1.0D3-
& THETA_T(Ntemp1+3)*1.0D-2*THETA_T(Ntemp1+2)*1.0D3
lmax = THETA_T(Ntemp1+2)*1.0D3+
& THETA_T(Ntemp1+3)*1.0D-2*THETA_T(Ntemp1+2)*1.0D3
* print*,THETA_T(Ntemp1+1),THETA_T(Ntemp1+2),THETA_T(Ntemp1+3)
* print*,'......',lmax, lmin
AA(1,1) = (lmax**6-lmin**6)/6.0D0/1.0D12
AA(1,2) = (lmax**5-lmin**5)/5.0D0/1.0D12
AA(1,3) = (lmax**4-lmin**4)/4.0D0/1.0D12
AA(2,1) = lmin**2
AA(2,2) = lmin
AA(2,3) = 1.0D0
AA(3,1) = lmax**2
AA(3,2) = lmax
AA(3,3) = 1.0D0
BB(1)=THETA_T(Ntemp1+1)*1.0D3/
& (Msolv*densityc)*((1.0D4)**3)/1.0D12
BB(2)=0.0D0
BB(3)=0.0D0
* print*,AA(1,1),AA(1,2),AA(1,3)
* print*,AA(2,1),AA(2,2),AA(2,3)
* print*,AA(3,1),AA(3,2),AA(3,3)
CALL DLSARG (Norder, AA, LDA, BB, IPATH, gamma)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -