⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sim1d.f

📁 对工业生产过程结晶过程的一个仿真程序软件包
💻 F
字号:
* Copyright c 1998-2002 The Board of Trustees of the University of Illinois*                 All rights reserved.* Developed by: Large Scale Systems Research Laboratory*               Professor Richard Braatz, Director*               Department of Chemical Engineering*               University of Illinois*               http://brahms.scs.uiuc.edu* * Permission hereby granted, free of charge, to any person obtaining a copy* of this software and associated documentation files (the "Software"), to* deal with the Software without restriction, including without limitation* the rights to use, copy, modify, merge, publish, distribute, sublicense,* and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions:*               1. Redistributions of source code must retain the above copyright*                  notice, this list of conditions and the following disclaimers.*               2. Redistributions in binary form must reproduce the above *                  copyright notice, this list of conditions and the following *                  disclaimers in the documentation and/or other materials *                  provided with the distribution.*               3. Neither the names of Large Scale Research Systems Laboratory,*                  University of Illinois, nor the names of its contributors may*                  be used to endorse or promote products derived from this *                  Software without specific prior written permission.** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER* DEALINGS IN THE SOFTWARE.********************************************************************************* sim21.f**   This program is used to simulate batch crystallizer under perfect mixing assumption.*   Crystals have one characteristic growth dimensions       PROGRAM Main      IMPLICIT NONE            INTEGER i,j, maxpoint, totTpts, totR1pts, maxr1      INTEGER skipT, skipR1, skipNext, k, nfile,maxf      REAL*8 delT, delR1, totTime, tUnit      PARAMETER ( maxpoint=4830, totTime=4800.0D0, maxr1=1600)      PARAMETER (delT=1D0,delR1=1D0,skipR1=1,skipT=4801,maxf=3202)*     f(0,1) and f(0,2) are imaginary boudary points, used for method 2.       REAL*8 f(0:maxr1, 2), Conc(maxpoint)      REAL*8 moment1(maxpoint),moment2(maxpoint)      REAL*8 moment0(maxpoint), moment3(maxpoint)      REAL*8 time(maxpoint), Concs(maxpoint)      REAL*8 superConc(maxpoint)      REAL*8 g, kg, b, kb, R, kv, rhoc      REAL*8 T(maxpoint), Grate(maxpoint), Brate(maxpoint)      REAL*8 Temp, Csat, growth, birth, Fzero       CHARACTER*9 filename      INTEGER mesh1, mesh2, mesh3      REAL*8 mrate, theta1, theta2, phi1, phi2, ve            DATA moment0/maxpoint*0.0D0/      DATA moment1/maxpoint*0.0D0/      DATA moment2/maxpoint*0.0D0/      DATA moment3/maxpoint*0.0D0/      DATA f/maxf*0.0D0/               COMMON g, kg, b, kb      COMMON /unit/ tUnit            tUnit=60D0      skipNext=skipT      mesh1=DINT(10.0D0/delR1)      mesh2=DINT(90.0D0/delR1)      mesh3=DINT(320.0D0/delR1)      mrate=0.0D0      filename='popxx.dat'*     Growth and nucleation kinetic parameters (Table 4.6 in Miller)*     (dimensionaless)      g=1.32D0      print*, "g=", g*     (mirons/sec, or min depending on tUnit)      kg=DEXP(8.849D0)/tUnit      print*, "kg=", kg*     (dimensionless)      b=1.78D0      print*, "b=", b*     (number of particles/micron^3/sec or min depending on tUnit) *     (the units have been corrected from that reported in*     Table 3.1 in Miller)      kb=DEXP(17.142D0)*(1.0D-04)**3/tUnit       print*, "kb=", kb*     Initial size of crystal      R=0.0D0       *     volume shape factor (Appendix C in Miller)      kv=1.0D0*     density of crystal in g/cm^3 (Appendix C in Miller)      rhoc=2.11D0  *     Total time discretization pts      totTpts=int(totTime/delT)+1      totR1pts=int(dble(maxr1)/delR1)+1 *     Initialization*     Initial time      time(1)=0.0D0*     Concentration g/g solvent      Conc(1)=0.493D0*     Initial temperature      T(1)=temp(time(1))*     Initial saturated Conc      Concs(1)=Csat(T(1))*     Inital super concentration      superConc(1)=(Conc(1)-Concs(1))/Concs(1)*     Boundary condition at f(r1,0)      DO i=1, totR1pts-1         f(i,1)=Fzero(delR1*dble(i))      ENDDO*     Boundary condition at f(maxr1,t)      f(totR1pts,1)=0.0D0*     Boundary condition at f(-1,t)      f(0,1)=0.0D0      f(0,2)=0.0D0*     Initial moments      DO i=1,mesh1         moment0(1)=moment0(1)+(f(i,1)+f(i+1,1))*0.5D0*delR1	 moment1(1)=moment1(1)+(f(i,1)*dble(i-1)*delR1+f(i+1,1)*dble(i)     &              *delR1)*0.5D0*delR1	 moment2(1)=moment2(1)+(f(i,1)*dble(i-1)**2*delR1**2+f(i+1,1)*     &              dble(i)**2*delR1**2)*0.5D0*delR1     	 moment3(1)=moment3(1)+(f(i,1)*dble(i-1)**3*delR1**3+f(i+1,1)*     &              dble(i)**3*delR1**3)*0.5D0*delR1      ENDDO      DO i=mesh2,mesh3         moment0(1)=moment0(1)+(f(i,1)+f(i+1,1))*0.5D0*delR1	 moment1(1)=moment1(1)+(f(i,1)*dble(i-1)*delR1+f(i+1,1)*dble(i)     &              *delR1)*0.5D0*delR1	 moment2(1)=moment2(1)+(f(i,1)*dble(i-1)**2*delR1**2+f(i+1,1)*     &              dble(i)**2*delR1**2)*0.5D0*delR1     	 moment3(1)=moment3(1)+(f(i,1)*dble(i-1)**3*delR1**3+f(i+1,1)*     &              dble(i)**3*delR1**3)*0.5D0*delR1      ENDDO*     Initial nucleation rate      Brate(1)=birth(Conc(1),Concs(1), moment3(1))*     Current growth rate      Grate(1)=growth(Conc(1), Concs(1))*     Compute mesh boundary      mrate=mrate+Grate(1)*delT      mesh1=mesh1+DNINT(mrate)      mesh2=mesh2+DNINT(mrate)      mesh3=mesh3+DNINT(mrate)      *     Write f to file      nfile=10      WRITE(filename(4:5), '(I2)')nfile      OPEN(UNIT=20, FILE=filename, FORM='FORMATTED',     &     ACCESS='SEQUENTIAL', STATUS='UNKNOWN')            DO i=1, totR1pts, skipR1         WRITE(20,30) i, time(1), f(i,1)      ENDDO      CLOSE(UNIT=20)      k=1      *     Simulation starts      print*, "running"      DO j=2,totTpts*       Current time        time(j)=time(j-1)+delT*       Current temperature        T(j)=temp(time(j))*       Current Csat        Concs(j)=Csat(T(j))*       Current concentration        Conc(j)=Conc(j-1)-dble(3)*delT*rhoc*kv*Grate(j-1)     &          *moment2(j-1)*(1.0D-04)**3+delT*rhoc     &          *kv*Brate(j-1)*R**3*(1.0D-04)**3*       Current relative  super Csat        superConc(j)=(Conc(j)-Concs(j))/Concs(j)*       Boundary condition at f(0,t) and f(maxr1,t)        f(totR1pts,2)=0.0D0*       Current population density f                   DO i=1, mesh1           if((f(i+1,1)-f(i,1)).EQ.0.0D0)then              theta2=0.0D0           else              theta2=(f(i,1)-f(i-1,1))/(f(i+1,1)-f(i,1))           endif           if(((f(i,1)-f(i-1,1)).EQ.0.0D0))then              theta1=0.0D0           else              theta1=(f(i-1,1)-f(i-2,1))/(f(i,1)-f(i-1,1))           endif           phi1=(DABS(theta1) +theta1)/(1.0D0+DABS(theta1))           phi2=(DABS(theta2) +theta2)/(1.0D0+DABS(theta2))           ve=delT/delR1*Grate(j-1)            f(i,2)=f(i,1)-ve*(f(i,1)-f(i-1,1))-ve/2.0D0*     &      (1.0D0-ve)*((f(i+1,1)-f(i,1))*phi2-     &                 (f(i,1)-f(i-1,1))*phi1)        ENDDO        f(1,2)=f(1,2)+Brate(j-1)*delT/delR1*        f(1,2)=Brate(j-1)/Grate(j-1)        DO i=mesh2, mesh3           if((f(i+1,1)-f(i,1)).EQ.0.0D0)then              theta2=0.0D0           else              theta2=(f(i,1)-f(i-1,1))/(f(i+1,1)-f(i,1))           endif           if(((f(i,1)-f(i-1,1)).EQ.0.0D0))then              theta1=0.0D0           else              theta1=(f(i-1,1)-f(i-2,1))/(f(i,1)-f(i-1,1))           endif           phi1=(DABS(theta1) +theta1)/(1.0D0+DABS(theta1))           phi2=(DABS(theta2) +theta2)/(1.0D0+DABS(theta2))           ve=delT/delR1*Grate(j-1)           f(i,2)=f(i,1)-ve*(f(i,1)-f(i-1,1))-ve/2.0D0*     &          (1.0D0-ve)*((f(i+1,1)-f(i,1))*phi2-     &          (f(i,1)-f(i-1,1))*phi1)                  ENDDO******************************************************************************       *	Current moments        DO i=1,mesh1         moment0(j)=moment0(j)+(f(i,2)+f(i+1,2))*0.5D0*delR1	 moment1(j)=moment1(j)+(f(i,2)*dble(i-1)*delR1+f(i+1,2)*dble(i)     &              *delR1)*0.5D0*delR1	 moment2(j)=moment2(j)+(f(i,2)*dble(i-1)**2*delR1**2+f(i+1,2)*     &              dble(i)**2*delR1**2)*0.5D0*delR1     	 moment3(j)=moment3(j)+(f(i,2)*dble(i-1)**3*delR1**3+f(i+1,2)*     &              dble(i)**3*delR1**3)*0.5D0*delR1        ENDDO        DO i=mesh2,mesh3         moment0(j)=moment0(j)+(f(i,2)+f(i+1,2))*0.5D0*delR1	 moment1(j)=moment1(j)+(f(i,2)*dble(i-1)*delR1+f(i+1,2)*dble(i)     &              *delR1)*0.5D0*delR1	 moment2(j)=moment2(j)+(f(i,2)*dble(i-1)**2*delR1**2+f(i+1,2)*     &              dble(i)**2*delR1**2)*0.5D0*delR1     	 moment3(j)=moment3(j)+(f(i,2)*dble(i-1)**3*delR1**3+f(i+1,2)*     &              dble(i)**3*delR1**3)*0.5D0*delR1        ENDDO        *       Current growth rate        Grate(j)=growth(Conc(j), Concs(j))*        print*, "growth=", Grate(j)*       Current nucleation rate        Brate(j)=birth(Conc(j),Concs(j), moment3(j))*        print*, "birth=", Brate(j)*       Compute mesh boundary        mrate=mrate+Grate(j)*delT        mesh1=10+DNINT(mrate)        mesh2=90+DNINT(mrate)        mesh3=320+DNINT(mrate)       *       Update f(i,1)        DO i=1, totR1pts           f(i,1)=f(i,2)        ENDDO*       Write f to file         IF ( j .EQ. skipNext) THEN                      nfile=nfile+1          WRITE(filename(4:5), '(I2)')nfile*          WRITE(50,40)time(j), mesh1, mesh2, mesh3, mrate          OPEN(UNIT=20, FILE=filename, FORM='FORMATTED',     &    ACCESS='SEQUENTIAL', STATUS='UNKNOWN')          DO i=1, totR1pts,skipR1             IF((f(i,1).GE.1.0D-16).OR.(f(i,1).LE.-1.0D-16)) then                WRITE(20,30) i,time(j), f(i,1)             ELSE                 WRITE(20,30) i,time(j), 0.0D0             ENDIF          ENDDO          CLOSE(UNIT=20)          k=k+1          skipNext=k*skipT        ENDIF      ENDDO      OPEN(UNIT=21, FILE='moments.dat', FORM='FORMATTED',     &     ACCESS='SEQUENTIAL', STATUS='UNKNOWN')      OPEN(UNIT=22, FILE='time.dat', FORM='FORMATTED',     &     ACCESS='SEQUENTIAL', STATUS='UNKNOWN')      OPEN(UNIT=23, FILE='conc.dat', FORM='FORMATTED',     &     ACCESS='SEQUENTIAL', STATUS='UNKNOWN')      OPEN(UNIT=24, FILE='tgb.dat', FORM='FORMATTED',     &     ACCESS='SEQUENTIAL', STATUS='UNKNOWN')      OPEN(UNIT=25, FILE='const.dat', FORM='FORMATTED',     &     ACCESS='SEQUENTIAL', STATUS='UNKNOWN')            DO j=1,totTpts,skipT         WRITE(22,10) time(j)        WRITE(23,20) Concs(j), Conc(j), superConc(j)        WRITE(24,15) time(j), T(j), Grate(j), Brate(j)        WRITE(21,15) moment0(j), moment1(j), moment2(j), moment3(j)      ENDDO      WRITE(25, 11) maxr1      WRITE(25, 10) totTime      WRITE(25, 10) delT      WRITE(25, 10) delR1      WRITE(25, 11) skipT      WRITE(25, 11) skipR1      WRITE(25, 11) totR1pts      WRITE(25, 11) totTpts      CLOSE (UNIT=20)      CLOSE (UNIT=21)      CLOSE (UNIT=22)      CLOSE (UNIT=23)      CLOSE (UNIT=24)      CLOSE (UNIT=25)      CLOSE (UNIT=50)       10   FORMAT(E13.6, 1X) 11   FORMAT(I9) 12   FORMAT(2(E13.6, 1X)) 15   FORMAT(4(E13.6,1X)) 20   FORMAT(3(E13.6,1X))  30   FORMAT(I8, 2(E13.6,1X))  40   FORMAT(E13.6,1X, 3(I5,1X),E13.6) 51   FORMAT(4(E13.6,1X))      PRINT*, "Done!"      STOP      END****************************************************************      REAL*8 FUNCTION Temp(time)*     Crystallizer temperature setpoint profile for the*     simulation of a batch cooling crystallizer**     input:   time - minutes*     output:  Temp - temperature in  degrees Centigrade      REAL*8 time      REAL*8 tUnit      COMMON /unit/ tUnit       *     constant-rate cooling*          Temp=-(32D0-28D0)/160D0/tUnit*time+32D0*     Natural cooling      Temp=(28.0D0-32.0D0)*(1.0D0-DEXP(-time/310.0D0/tUnit))     &     +32.0D0       RETURN      END*************************************************************      REAL*8 FUNCTION Csat(T)*     saturation concentration for the simulation of a*     cooling batch crystallizer (potassium nitrate-water)*     system, from Appendix C in Miller**     input:  T - temperature (20-40 degree Centigrade)*     output: Csat - saturation concentration *                    (g KNO3/g water)      REAL*8 T      Csat=0.1286D0+0.00588D0*T+0.0001721D0*T**2      RETURN      END****************************************************************      REAL*8 FUNCTION growth(conc, concs)*     growth rate for the simulation of a cooling batch*     crystallizer*     *     arguments:  conc - solute concentration*                 concs - saturation concentration*     non-argument input: kg, g kinetic rate parameters*     output: growth - growth rate  microns/sec      REAL*8 conc, concs, kg, g, b, kb      COMMON g, kg, b, kb      growth=kg*((conc-concs)/concs)**g      growth=0.2D0       RETURN      END************************************************************      REAL*8 FUNCTION birth(conc, concs,m3)*     birthth rate for the simulation of a cooling batch*     crystallizer**     arguments:  conc - solute concentration*                 concs - saturation concentration*                 m3 - 3rd moment*     non-argument input: kb, b kinetic rate parameters*     output: birth - birth rate  #crystals/sec        REAL*8 conc, concs, m3, kb, b, g, kg      COMMON g, kg, b, kb*      birth=kb*((conc-concs)/concs)**b*m3      birth=0.0D0      RETURN      END*******************************************************************      REAL*8 FUNCTION Fzero(r1)      *     Initial population density f**     arguments:  r1 - length of crystal*     output:     Fzero - inital population density for the given r1*                         # crystals /g solvent/micron *       population density function:**       f0= -0.00034786x^2 + 0.1363609*x - 13.2743**       which is in units of number of crystals/g solvent/micron.*       This function was based on assuming 0.05 g as the mass in*       1650 grams of solvent and 180.5-211.5 microns as the size range*       for the seed crystals, and assuming a quadratic distibution*       function.  The values are valid if mass of seed crystals*       is scaled up proportionally to the mass of solvent.      REAL*8 r1      IF (r1 .LT. 180.5D0) THEN          Fzero=0.0D0      ELSE IF ( r1 .GT. 211.5D0) THEN          Fzero=0.0D0      ELSE          Fzero= -0.00034786D0*r1**2 + 0.1363609D0*r1 - 13.2743D0        END IF            RETURN      END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -