📄 conf2.f
字号:
* Copyright c 1998-2002 The Board of Trustees of the University of Illinois
* All rights reserved.
* Developed by: Large Scale Systems Research Laboratory
* Professor Richard Braatz, Director* Department of Chemical Engineering* University of Illinois
* http://brahms.scs.uiuc.edu
* * Permission hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal with the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimers.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimers in the documentation and/or other materials
* provided with the distribution.
* 3. Neither the names of Large Scale Research Systems Laboratory,
* University of Illinois, nor the names of its contributors may
* be used to endorse or promote products derived from this
* Software without specific prior written permission.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* conf2.f
*
* This program calculates the parameter covariance matrix and
* the variance for each growth and nucleation kinetic
* parameter (g1, kg1, g2, kg2, b, and kb).
*
* This program reads the growth and nucleation
* kinetic parameters (g1, kg1, g2, kg2, b, and kb),
* concentration, and moments data from data files.
*
*
* Nset=the number of the data files
*
* Date: August 8, 1998
* Authors: Serena H. Chung and Richard D. Braatz
* Department of Chemical Engineering
* University of Illinois at Urbana-Champaign
* Modified:March 6, 2000
* By: David L. Ma and Richard D. Braatz
*
* Modifications were to replace the use of transmittance
* measurements with moment measurements.
*
*
*
use MSIMSL
* PROGRAM MAIN
INTEGER NSTEP, NEQ, MXPARM, NTHETA, NU,Nsets
INTEGER npos1, npos2, MSTEP, Cinter, Minter
PARAMETER (NSTEP=161,NEQ=91,MXPARM=50,NTHETA=6, NU=12)
PARAMETER (Nsets=1, npos1=12, npos2=8, MSTEP=5)
PARAMETER (Cinter=1, Minter=30)
INTEGER I, J, K, M, N,Iteration, I1, L, P
INTEGER Norder, LDA, LDB, IPATH
PARAMETER(Norder=3, LDA=3, LDB=3,IPATH=1)
PARAMETER(LDFAC=6, P=6)
INTEGER IPVT(P)
REAL*8 T, Y(NEQ)
REAL*8 F(NU*(NSTEP-1)*Nsets, NTHETA)
REAL*8 FTVF(NTHETA, NTHETA)
REAL*8 inv_FTVF(NTHETA,NTHETA)
REAL*8 FTV(NTHETA,NU*(NSTEP-1)*Nsets)
REAL*8 DET1, DET2, FAD(LDFAC,LDFAC)
REAL*8 delt, tfinal, Msolv
REAL*8 mu00
REAL*8 cell_length, kv, ka, densityc, densitys
REAL*8 r0, alpha, g1, kg1, g2, kg2, b, kb
* REAL*8 weight_mean_size, cov, mass_ratio
REAL*8 moment00(NSTEP), moment10(NSTEP), moment01(NSTEP)
REAL*8 moment11(NSTEP), moment20(NSTEP), moment02(NSTEP)
REAL*8 moment21(NSTEP), moment12(NSTEP), moment22(NSTEP)
REAL*8 moment30(NSTEP), moment31(NSTEP)
REAL*8 time (NSTEP), concentration(NSTEP)
REAL*8 seed_moment10(NSTEP), seed_moment01(NSTEP)
REAL*8 seed_moment11(NSTEP), seed_moment20(NSTEP)
REAL*8 seed_moment02(NSTEP), seed_moment21(NSTEP)
REAL*8 seed_moment12(NSTEP)
REAL*8 temperature(NSTEP), relsatn(NSTEP)
REAL*8 Temp, Csat, detFTVF
REAL*8 derivtheta(NSTEP,NU,NTHETA)
REAL*8 ConcData(NSTEP-1), Mu00Data(MSTEP)
REAL*8 Mu10Data(MSTEP), Mu01Data(MSTEP)
REAL*8 Mu11Data(MSTEP), Mu20Data(MSTEP)
REAL*8 Mu02Data(MSTEP), Mu21Data(MSTEP)
REAL*8 Mu12Data(MSTEP), Mu22Data(MSTEP)
REAL*8 Mu30Data(MSTEP), Mu31Data(MSTEP)
REAL*8 conc_variance, mu00_variance, mu01_variance
REAL*8 mu10_variance, mu11_variance, mu20_variance
REAL*8 mu02_variance, mu21_variance, mu12_variance
REAL*8 mu22_variance, mu30_variance, mu31_variance
REAL*8 chi_squared
REAL*8 g1_interval, lnkg1_interval
REAL*8 g2_interval, lnkg2_interval
REAL*8 b_interval, lnkb_interval
* REAL*8 AA(3,3), BB(3), gamma1(3), lmin, lmax
REAL*8 mass_seed, mean_seed, width
CHARACTER*60 file_concen, file_mu
*lsodes' parameters
INTEGER itol, iopt, itask, istate, mf
INTEGER lrw, liw, iwork(1000)
REAL*8 rtol, atol, rwork(5800)
EXTERNAL FCN, FCNJ
COMMON /GROWTH_DATA1/kg1, g1
COMMON /GROWTH_DATA2/kg2, g2
COMMON /BIRTH_DATA/kb, b
COMMON /EXP_DATA/r0, alpha, mu00
COMMON Iteration
file_concen='concen_data'
file_mu='mu_data'
OPEN(UNIT=90, FILE='param.dat', FORM='FORMATTED',
& ACCESS='SEQUENTIAL', STATUS='UNKNOWN')
READ(90,*)g1
READ(90,*)kg1
READ(90,*)g2
READ(90,*)kg2
READ(90,*)b
READ(90,*)kb
kg1=DEXP(kg1)
kg2=DEXP(kg2)
kb=DEXP(kb)
print*, "running"
DO 787 Iteration = 1, Nsets
*Simulation parameters
* controller time step in minutes
delt = 1.0D0
* final time in minutes
tfinal = DFLOAT(NSTEP)*delt
*Parameters for experimental set-up
* cell length for spectrophotometer in millimeter
* This was modified from that in Miller's thesis because
* his value (2.0) did not agree with his simulation results
cell_length=1.77D0
* mass of solvent in grams, converted from 2000 gallons
Msolv=7.57D6
* volume shape factor (Appendix C in Miller)
kv=1.0D0
* area shape factor (Appendix C in Miller)
ka=6.0D0
* heat transfer coefficient multiplied by surface area
* in calorie/minute/degree C
* density of solvent in g/cm^3 (solvent is water)
densitys=1.0D0
* density of crystal in g/cm^3 (Appendix C in Miller)
densityc=2.11D0
* seed size at nucleation
r0=0.0D0
* crystal density*volume shape factor,
* in gram crystal/micron^3/particle
* (alpha*L^3=mass of particle)
alpha=kv*densityc*(1.0D-4)**3
* Total mass of seed crystals (grams)
mass_seed = 230.0D0
* Mean size of the seed crystals (microns)
mean_seed = 196.0D0
* Percent width of the initial seed distribution
width = 6.12D0
*Growth and nucleation kinetic parameters
* (dimensionaless)
* g = 0.12889594028434D+01
* g = 0.13151365743328D+01
* g = 0.13125608981096D+01
* g = 0.12912359265617D+01
* g = 0.12993596644840D+01
* (mirons/minute)
* kg = DEXP(0.87458112413202D+01)
* kg = DEXP(0.88354817511395D+01)
* kg = DEXP(0.88246805512230D+01)
* kg = DEXP(0.87309813411979D+01)
* kg = DEXP(0.87620506647544D+01)
* (dimensionless)
* b = 0.17519140794580D+01
* b = 0.17762965268414D+01
* b = 0.17704343279926D+01
* b = 0.17465821622552D+01
* b = 0.17860382260529D+01
* (number of particles/cm^3/minute)
* (the units have been corrected from that reported in
* Table 3.1 in Miller)
* kb = DEXP(0.17048465188505D+02)
* kb = DEXP(0.17137238240957D+02)
* kb = DEXP(0.17106281255156D+02)
* kb = DEXP(0.17005247110939D+02)
* kb = DEXP(0.17179861650138D+02)
*Initial conditions
* initial concentration, g/g solvent
concentration(1) = 0.493D0
*
* The initial moments were computed using the following
* population density function:
*
* f0= -0.00034786x^2 + 0.1363609*x - 13.2743
* -0.00034786y^2 + 0.1363609*y - 13.2743
*
* which is in units of number of crystals/g solvent/micron.
* This function was based on assuming 0.05 g as the mass in
* 1650 grams of solvent and 180-212 microns as the size range
* for the seed crystals, and assuming a quadratic distibution
* function. The values are valid if mass of seed crystals
* is scaled up proportionally to the mass of solvent.
*
* initial zeroth moment, number of particle/g solvent
mu00=121.575D0
moment00(1)=mu00
* initial moment10, moment01 micron/g solvent
moment10(1)=2.383D4
moment01(1)=moment10(1)
seed_moment10(1)=moment10(1)
seed_moment01(1)=moment10(1)
* initia1 moment11, micron^2/g solvent
moment11(1)=4.67D6
seed_moment11(1)=moment11(1)
* initial moment20, moment02 micron^2/g solvent
moment20(1)=4.679D6
moment02(1)=moment20(1)
seed_moment20(1)=moment20(1)
seed_moment02(1)=moment20(1)
* initial moment12, moment21 micron^3/g solvent
moment12(1)=9.17D8
moment21(1)=moment12(1)
seed_moment21(1)=moment12(1)
seed_moment12(1)=moment12(1)
* initial moment22 micron^4/g solvent
moment22(1)=1.801D11
* initial moment30 micron^3/g solvent
moment30(1)=9.203D8
* initial moment31 micron^4/g solvent
moment31(1)=1.801D11
* initial relative supersaturation
relsatn(1)=(concentration(1)-Csat(Temp(0.0D0)))/
& Csat(Temp(0.0D0))
conc_variance=3.53D-4
mu00_variance=(0.2D0*moment00(1))**2.0D0
mu10_variance=(0.2D0*seed_moment10(1))**2.0D0
mu01_variance=(0.2D0*seed_moment01(1))**2.0D0
mu11_variance=(0.2D0*seed_moment11(1))**2.0D0
mu20_variance=(0.2D0*seed_moment20(1))**2.0D0
mu02_variance=(0.2D0*seed_moment02(1))**2.0D0
mu21_variance=(0.2D0*seed_moment21(1))**2.0D0
mu12_variance=(0.2D0*seed_moment12(1))**2.0D0
mu22_variance=(0.2D0*moment22(1))**2.0D0
mu30_variance=(0.2D0*moment30(1))**2.0D0
mu31_variance=(0.2D0*moment31(1))**2.0D0
* Initial conditions for derivatives wrt to theta
DO 163 I = 1 , NU
DO 164 J = 1 , NTHETA
derivtheta(1,I,J)=0.0D0
164 CONTINUE
163 CONTINUE
* Read Data in files
I1=10+Iteration
DO J = 1,NSTEP-1
WRITE(file_concen(npos1:npos1+1), '(I2)') I1
file_concen = file_concen(1:npos1+1) // '.txt'
OPEN(UNIT=20, FILE=file_concen, FORM='FORMATTED',
& ACCESS='SEQUENTIAL', STATUS='OLD')
READ(20,*) ConcData(J)
ENDDO
CLOSE(UNIT=20)
DO J=1,MSTEP
WRITE(file_mu(npos2:npos2+1), '(I2)') I1
file_mu = file_mu(1:npos2+1) // '.txt'
OPEN(UNIT=20, FILE=file_mu, FORM='FORMATTED',
& ACCESS='SEQUENTIAL', STATUS='OLD')
READ(20,*) Mu00Data(J), Mu10Data(J), Mu01Data(J),
& Mu11Data(J), Mu20Data(J), Mu02Data(J),
& Mu21Data(J), Mu12Data(J), Mu22Data(J),
& Mu30Data(J), Mu31Data(J)
ENDDO
CLOSE(UNIT=20)
*Simulation parameters
*********************************************************
*
mf=222
itask=1
istate =1
iopt=1
rwork(5) = 1.1D-14
rwork(6) = 1.0D-1
rwork(7) = 1.0D-14
iwork(6) = 100000
lrw=3800
liw=200
rtol=1.0d-5
atol=1.0d-5
itol=1
******************************************************
*
time(1)=0.0D0
T=0.0D0
L=1
DO 1200 I=1,(NSTEP-1)
temperature(I)=Temp(T)
Y(1)=moment00(I)
Y(2)=moment10(I)
Y(3)=moment01(I)
Y(4)=moment11(I)
Y(5)=moment20(I)
Y(6)=moment02(I)
Y(7)=moment21(I)
Y(8)=moment12(I)
Y(9)=moment22(I)
Y(10)=moment30(I)
Y(11)=moment31(I)
Y(12)=concentration(I)
Y(13)=seed_moment10(I)
Y(14)=seed_moment01(I)
Y(15)=seed_moment11(I)
Y(16)=seed_moment20(I)
Y(17)=seed_moment02(I)
Y(18)=seed_moment21(I)
Y(19)=seed_moment12(I)
K = 20
DO 263 M = 1 , NU
DO 264 N = 1 , NTHETA
Y(K)=derivtheta(I,M,N)
* print*, "k=", K
* print*, "Y(K)=", Y(K)
K = K + 1
264 CONTINUE
263 CONTINUE
* pause
* print*, 'before lsodes'
* print*, 'istate before', istate
CALL lsodes ( FCN,NEQ,Y,T,T+Cinter,itol,rtol,
& atol,itask,istate,iopt,
& rwork,lrw,iwork,liw, FCNJ, mf )
* print*, 'after lsodes'
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -