⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 os_unix.c

📁 sqlite嵌入式数据库源码
💻 C
📖 第 1 页 / 共 4 页
字号:
        pLock->locktype = NO_LOCK;      }else{        rc = SQLITE_IOERR;  /* This should never happen */      }    }    /* Decrement the count of locks against this same file.  When the    ** count reaches zero, close any other file descriptors whose close    ** was deferred because of outstanding locks.    */    pOpen = pFile->pOpen;    pOpen->nLock--;    assert( pOpen->nLock>=0 );    if( pOpen->nLock==0 && pOpen->nPending>0 ){      int i;      for(i=0; i<pOpen->nPending; i++){        close(pOpen->aPending[i]);      }      free(pOpen->aPending);      pOpen->nPending = 0;      pOpen->aPending = 0;    }  }  sqlite3OsLeaveMutex();  pFile->locktype = locktype;  return rc;}/*** Close a file.*/static int unixClose(OsFile **pId){  unixFile *id = (unixFile*)*pId;  if( !id ) return SQLITE_OK;  unixUnlock(*pId, NO_LOCK);  if( id->dirfd>=0 ) close(id->dirfd);  id->dirfd = -1;  sqlite3OsEnterMutex();  if( id->pOpen->nLock ){    /* If there are outstanding locks, do not actually close the file just    ** yet because that would clear those locks.  Instead, add the file    ** descriptor to pOpen->aPending.  It will be automatically closed when    ** the last lock is cleared.    */    int *aNew;    struct openCnt *pOpen = id->pOpen;    aNew = realloc( pOpen->aPending, (pOpen->nPending+1)*sizeof(int) );    if( aNew==0 ){      /* If a malloc fails, just leak the file descriptor */    }else{      pOpen->aPending = aNew;      pOpen->aPending[pOpen->nPending] = id->h;      pOpen->nPending++;    }  }else{    /* There are no outstanding locks so we can close the file immediately */    close(id->h);  }  releaseLockInfo(id->pLock);  releaseOpenCnt(id->pOpen);  sqlite3OsLeaveMutex();  id->isOpen = 0;  TRACE2("CLOSE   %-3d\n", id->h);  OpenCounter(-1);  sqlite3ThreadSafeFree(id);  *pId = 0;  return SQLITE_OK;}/*** Turn a relative pathname into a full pathname.  Return a pointer** to the full pathname stored in space obtained from sqliteMalloc().** The calling function is responsible for freeing this space once it** is no longer needed.*/char *sqlite3UnixFullPathname(const char *zRelative){  char *zFull = 0;  if( zRelative[0]=='/' ){    sqlite3SetString(&zFull, zRelative, (char*)0);  }else{    char *zBuf = sqliteMalloc(5000);    if( zBuf==0 ){      return 0;    }    zBuf[0] = 0;    sqlite3SetString(&zFull, getcwd(zBuf, 5000), "/", zRelative,                    (char*)0);    sqliteFree(zBuf);  }#if 0  /*  ** Remove "/./" path elements and convert "/A/./" path elements  ** to just "/".  */  if( zFull ){    int i, j;    for(i=j=0; zFull[i]; i++){      if( zFull[i]=='/' ){        if( zFull[i+1]=='/' ) continue;        if( zFull[i+1]=='.' && zFull[i+2]=='/' ){          i += 1;          continue;        }        if( zFull[i+1]=='.' && zFull[i+2]=='.' && zFull[i+3]=='/' ){          while( j>0 && zFull[j-1]!='/' ){ j--; }          i += 3;          continue;        }      }      zFull[j++] = zFull[i];    }    zFull[j] = 0;  }#endif  return zFull;}/*** Change the value of the fullsync flag in the given file descriptor.*/static void unixSetFullSync(OsFile *id, int v){  ((unixFile*)id)->fullSync = v;}/*** Return the underlying file handle for an OsFile*/static int unixFileHandle(OsFile *id){  return ((unixFile*)id)->h;}/*** Return an integer that indices the type of lock currently held** by this handle.  (Used for testing and analysis only.)*/static int unixLockState(OsFile *id){  return ((unixFile*)id)->locktype;}/*** This vector defines all the methods that can operate on an OsFile** for unix.*/static const IoMethod sqlite3UnixIoMethod = {  unixClose,  unixOpenDirectory,  unixRead,  unixWrite,  unixSeek,  unixTruncate,  unixSync,  unixSetFullSync,  unixFileHandle,  unixFileSize,  unixLock,  unixUnlock,  unixLockState,  unixCheckReservedLock,};/*** Allocate memory for a unixFile.  Initialize the new unixFile** to the value given in pInit and return a pointer to the new** OsFile.  If we run out of memory, close the file and return NULL.*/static int allocateUnixFile(unixFile *pInit, OsFile **pId){  unixFile *pNew;  pInit->dirfd = -1;  pInit->fullSync = 0;  pInit->locktype = 0;  pInit->offset = 0;  SET_THREADID(pInit);  pNew = sqlite3ThreadSafeMalloc( sizeof(unixFile) );  if( pNew==0 ){    close(pInit->h);    sqlite3OsEnterMutex();    releaseLockInfo(pInit->pLock);    releaseOpenCnt(pInit->pOpen);    sqlite3OsLeaveMutex();    *pId = 0;    return SQLITE_NOMEM;  }else{    *pNew = *pInit;    pNew->pMethod = &sqlite3UnixIoMethod;    *pId = (OsFile*)pNew;    OpenCounter(+1);    return SQLITE_OK;  }}#endif /* SQLITE_OMIT_DISKIO *//***************************************************************************** Everything above deals with file I/O.  Everything that follows deals** with other miscellanous aspects of the operating system interface****************************************************************************//*** Get information to seed the random number generator.  The seed** is written into the buffer zBuf[256].  The calling function must** supply a sufficiently large buffer.*/int sqlite3UnixRandomSeed(char *zBuf){  /* We have to initialize zBuf to prevent valgrind from reporting  ** errors.  The reports issued by valgrind are incorrect - we would  ** prefer that the randomness be increased by making use of the  ** uninitialized space in zBuf - but valgrind errors tend to worry  ** some users.  Rather than argue, it seems easier just to initialize  ** the whole array and silence valgrind, even if that means less randomness  ** in the random seed.  **  ** When testing, initializing zBuf[] to zero is all we do.  That means  ** that we always use the same random number sequence.  This makes the  ** tests repeatable.  */  memset(zBuf, 0, 256);#if !defined(SQLITE_TEST)  {    int pid, fd;    fd = open("/dev/urandom", O_RDONLY);    if( fd<0 ){      time_t t;      time(&t);      memcpy(zBuf, &t, sizeof(t));      pid = getpid();      memcpy(&zBuf[sizeof(time_t)], &pid, sizeof(pid));    }else{      read(fd, zBuf, 256);      close(fd);    }  }#endif  return SQLITE_OK;}/*** Sleep for a little while.  Return the amount of time slept.** The argument is the number of milliseconds we want to sleep.*/int sqlite3UnixSleep(int ms){#if defined(HAVE_USLEEP) && HAVE_USLEEP  usleep(ms*1000);  return ms;#else  sleep((ms+999)/1000);  return 1000*((ms+999)/1000);#endif}/*** Static variables used for thread synchronization.**** inMutex      the nesting depth of the recursive mutex.  The thread**              holding mutexMain can read this variable at any time.**              But is must hold mutexAux to change this variable.  Other**              threads must hold mutexAux to read the variable and can**              never write.**** mutexOwner   The thread id of the thread holding mutexMain.  Same**              access rules as for inMutex.**** mutexOwnerValid   True if the value in mutexOwner is valid.  The same**                   access rules apply as for inMutex.**** mutexMain    The main mutex.  Hold this mutex in order to get exclusive**              access to SQLite data structures.**** mutexAux     An auxiliary mutex needed to access variables defined above.**** Mutexes are always acquired in this order: mutexMain mutexAux.   It** is not necessary to acquire mutexMain in order to get mutexAux - just** do not attempt to acquire them in the reverse order: mutexAux mutexMain.** Either get the mutexes with mutexMain first or get mutexAux only.**** When running on a platform where the three variables inMutex, mutexOwner,** and mutexOwnerValid can be set atomically, the mutexAux is not required.** On many systems, all three are 32-bit integers and writing to a 32-bit** integer is atomic.  I think.  But there are no guarantees.  So it seems** safer to protect them using mutexAux.*/static int inMutex = 0;#ifdef SQLITE_UNIX_THREADSstatic pthread_t mutexOwner;          /* Thread holding mutexMain */static int mutexOwnerValid = 0;       /* True if mutexOwner is valid */static pthread_mutex_t mutexMain = PTHREAD_MUTEX_INITIALIZER; /* The mutex */static pthread_mutex_t mutexAux = PTHREAD_MUTEX_INITIALIZER;  /* Aux mutex */#endif/*** The following pair of routine implement mutual exclusion for** multi-threaded processes.  Only a single thread is allowed to** executed code that is surrounded by EnterMutex() and LeaveMutex().**** SQLite uses only a single Mutex.  There is not much critical** code and what little there is executes quickly and without blocking.**** As of version 3.3.2, this mutex must be recursive.*/void sqlite3UnixEnterMutex(){#ifdef SQLITE_UNIX_THREADS  pthread_mutex_lock(&mutexAux);  if( !mutexOwnerValid || !pthread_equal(mutexOwner, pthread_self()) ){    pthread_mutex_unlock(&mutexAux);    pthread_mutex_lock(&mutexMain);    assert( inMutex==0 );    assert( !mutexOwnerValid );    pthread_mutex_lock(&mutexAux);    mutexOwner = pthread_self();    mutexOwnerValid = 1;  }  inMutex++;  pthread_mutex_unlock(&mutexAux);#else  inMutex++;#endif}void sqlite3UnixLeaveMutex(){  assert( inMutex>0 );#ifdef SQLITE_UNIX_THREADS  pthread_mutex_lock(&mutexAux);  inMutex--;  assert( pthread_equal(mutexOwner, pthread_self()) );  if( inMutex==0 ){    assert( mutexOwnerValid );    mutexOwnerValid = 0;    pthread_mutex_unlock(&mutexMain);  }  pthread_mutex_unlock(&mutexAux);#else  inMutex--;#endif}/*** Return TRUE if the mutex is currently held.**** If the thisThrd parameter is true, return true only if the** calling thread holds the mutex.  If the parameter is false, return** true if any thread holds the mutex.*/int sqlite3UnixInMutex(int thisThrd){#ifdef SQLITE_UNIX_THREADS  int rc;  pthread_mutex_lock(&mutexAux);  rc = inMutex>0 && (thisThrd==0 || pthread_equal(mutexOwner,pthread_self()));  pthread_mutex_unlock(&mutexAux);  return rc;#else  return inMutex>0;#endif}/*** Remember the number of thread-specific-data blocks allocated.** Use this to verify that we are not leaking thread-specific-data.** Ticket #1601*/#ifdef SQLITE_TESTint sqlite3_tsd_count = 0;# ifdef SQLITE_UNIX_THREADS    static pthread_mutex_t tsd_counter_mutex = PTHREAD_MUTEX_INITIALIZER;#   define TSD_COUNTER(N) \             pthread_mutex_lock(&tsd_counter_mutex); \             sqlite3_tsd_count += N; \             pthread_mutex_unlock(&tsd_counter_mutex);# else#   define TSD_COUNTER(N)  sqlite3_tsd_count += N# endif#else# define TSD_COUNTER(N)  /* no-op */#endif/*** If called with allocateFlag>0, then return a pointer to thread** specific data for the current thread.  Allocate and zero the** thread-specific data if it does not already exist.**** If called with allocateFlag==0, then check the current thread** specific data.  Return it if it exists.  If it does not exist,** then return NULL.**** If called with allocateFlag<0, check to see if the thread specific** data is allocated and is all zero.  If it is then deallocate it.** Return a pointer to the thread specific data or NULL if it is** unallocated or gets deallocated.*/ThreadData *sqlite3UnixThreadSpecificData(int allocateFlag){  static const ThreadData zeroData = {0};  /* Initializer to silence warnings                                           ** from broken compilers */#ifdef SQLITE_UNIX_THREADS  static pthread_key_t key;  static int keyInit = 0;  ThreadData *pTsd;  if( !keyInit ){    sqlite3OsEnterMutex();    if( !keyInit ){      int rc;      rc = pthread_key_create(&key, 0);      if( rc ){        sqlite3OsLeaveMutex();        return 0;      }      keyInit = 1;    }    sqlite3OsLeaveMutex();  }  pTsd = pthread_getspecific(key);  if( allocateFlag>0 ){    if( pTsd==0 ){      if( !sqlite3TestMallocFail() ){        pTsd = sqlite3OsMalloc(sizeof(zeroData));      }#ifdef SQLITE_MEMDEBUG      sqlite3_isFail = 0;#endif      if( pTsd ){        *pTsd = zeroData;        pthread_setspecific(key, pTsd);        TSD_COUNTER(+1);      }    }  }else if( pTsd!=0 && allocateFlag<0             && memcmp(pTsd, &zeroData, sizeof(ThreadData))==0 ){    sqlite3OsFree(pTsd);    pthread_setspecific(key, 0);    TSD_COUNTER(-1);    pTsd = 0;  }  return pTsd;#else  static ThreadData *pTsd = 0;  if( allocateFlag>0 ){    if( pTsd==0 ){      if( !sqlite3TestMallocFail() ){        pTsd = sqlite3OsMalloc( sizeof(zeroData) );      }#ifdef SQLITE_MEMDEBUG      sqlite3_isFail = 0;#endif      if( pTsd ){        *pTsd = zeroData;        TSD_COUNTER(+1);      }    }  }else if( pTsd!=0 && allocateFlag<0            && memcmp(pTsd, &zeroData, sizeof(ThreadData))==0 ){    sqlite3OsFree(pTsd);    TSD_COUNTER(-1);    pTsd = 0;  }  return pTsd;#endif}/*** The following variable, if set to a non-zero value, becomes the result** returned from sqlite3OsCurrentTime().  This is used for testing.*/#ifdef SQLITE_TESTint sqlite3_current_time = 0;#endif/*** Find the current time (in Universal Coordinated Time).  Write the** current time and date as a Julian Day number into *prNow and** return 0.  Return 1 if the time and date cannot be found.*/int sqlite3UnixCurrentTime(double *prNow){#ifdef NO_GETTOD  time_t t;  time(&t);  *prNow = t/86400.0 + 2440587.5;#else  struct timeval sNow;  struct timezone sTz;  /* Not used */  gettimeofday(&sNow, &sTz);  *prNow = 2440587.5 + sNow.tv_sec/86400.0 + sNow.tv_usec/86400000000.0;#endif#ifdef SQLITE_TEST  if( sqlite3_current_time ){    *prNow = sqlite3_current_time/86400.0 + 2440587.5;  }#endif  return 0;}#endif /* OS_UNIX */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -