📄 cairo-path-stroke.c
字号:
/* cairo - a vector graphics library with display and print output * * Copyright © 2002 University of Southern California * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * * The Original Code is the cairo graphics library. * * The Initial Developer of the Original Code is University of Southern * California. * * Contributor(s): * Carl D. Worth <cworth@cworth.org> */#include "cairoint.h"typedef struct cairo_stroker { cairo_stroke_style_t *style; cairo_matrix_t *ctm; cairo_matrix_t *ctm_inverse; double tolerance; cairo_traps_t *traps; cairo_pen_t pen; cairo_point_t current_point; cairo_point_t first_point; cairo_bool_t has_sub_path; cairo_bool_t has_current_face; cairo_stroke_face_t current_face; cairo_bool_t has_first_face; cairo_stroke_face_t first_face; cairo_bool_t dashed; int dash_index; int dash_on; double dash_remain;} cairo_stroker_t;/* private functions */static void_cairo_stroker_init (cairo_stroker_t *stroker, cairo_stroke_style_t *stroke_style, cairo_matrix_t *ctm, cairo_matrix_t *ctm_inverse, double tolerance, cairo_traps_t *traps);static void_cairo_stroker_fini (cairo_stroker_t *stroker);static cairo_status_t_cairo_stroker_move_to (void *closure, cairo_point_t *point);static cairo_status_t_cairo_stroker_line_to (void *closure, cairo_point_t *point);static cairo_status_t_cairo_stroker_line_to_dashed (void *closure, cairo_point_t *point);static cairo_status_t_cairo_stroker_curve_to (void *closure, cairo_point_t *b, cairo_point_t *c, cairo_point_t *d);static cairo_status_t_cairo_stroker_curve_to_dashed (void *closure, cairo_point_t *b, cairo_point_t *c, cairo_point_t *d);static cairo_status_t_cairo_stroker_close_path (void *closure);static void_translate_point (cairo_point_t *point, cairo_point_t *offset);static int_cairo_stroker_face_clockwise (cairo_stroke_face_t *in, cairo_stroke_face_t *out);static cairo_status_t_cairo_stroker_join (cairo_stroker_t *stroker, cairo_stroke_face_t *in, cairo_stroke_face_t *out);static void_cairo_stroker_start_dash (cairo_stroker_t *stroker){ double offset; int on = 1; int i = 0; offset = stroker->style->dash_offset; /* We stop searching for a starting point as soon as the offset reaches zero. Otherwise when an initial dash segment shrinks to zero it will be skipped over. */ while (offset > 0.0 && offset >= stroker->style->dash[i]) { offset -= stroker->style->dash[i]; on = 1-on; if (++i == stroker->style->num_dashes) i = 0; } stroker->dashed = TRUE; stroker->dash_index = i; stroker->dash_on = on; stroker->dash_remain = stroker->style->dash[i] - offset;}static void_cairo_stroker_step_dash (cairo_stroker_t *stroker, double step){ stroker->dash_remain -= step; if (stroker->dash_remain <= 0) { stroker->dash_index++; if (stroker->dash_index == stroker->style->num_dashes) stroker->dash_index = 0; stroker->dash_on = 1-stroker->dash_on; stroker->dash_remain = stroker->style->dash[stroker->dash_index]; }}static void_cairo_stroker_init (cairo_stroker_t *stroker, cairo_stroke_style_t *stroke_style, cairo_matrix_t *ctm, cairo_matrix_t *ctm_inverse, double tolerance, cairo_traps_t *traps){ stroker->style = stroke_style; stroker->ctm = ctm; stroker->ctm_inverse = ctm_inverse; stroker->tolerance = tolerance; stroker->traps = traps; _cairo_pen_init (&stroker->pen, stroke_style->line_width / 2.0, tolerance, ctm); stroker->has_current_face = FALSE; stroker->has_first_face = FALSE; stroker->has_sub_path = FALSE; if (stroker->style->dash) _cairo_stroker_start_dash (stroker); else stroker->dashed = FALSE;}static void_cairo_stroker_fini (cairo_stroker_t *stroker){ _cairo_pen_fini (&stroker->pen);}static void_translate_point (cairo_point_t *point, cairo_point_t *offset){ point->x += offset->x; point->y += offset->y;}static int_cairo_stroker_face_clockwise (cairo_stroke_face_t *in, cairo_stroke_face_t *out){ cairo_slope_t in_slope, out_slope; _cairo_slope_init (&in_slope, &in->point, &in->cw); _cairo_slope_init (&out_slope, &out->point, &out->cw); return _cairo_slope_clockwise (&in_slope, &out_slope);}static cairo_status_t_cairo_stroker_join (cairo_stroker_t *stroker, cairo_stroke_face_t *in, cairo_stroke_face_t *out){ cairo_status_t status; int clockwise = _cairo_stroker_face_clockwise (out, in); cairo_point_t *inpt, *outpt; if (in->cw.x == out->cw.x && in->cw.y == out->cw.y && in->ccw.x == out->ccw.x && in->ccw.y == out->ccw.y) { return CAIRO_STATUS_SUCCESS; } if (clockwise) { inpt = &in->ccw; outpt = &out->ccw; } else { inpt = &in->cw; outpt = &out->cw; } switch (stroker->style->line_join) { case CAIRO_LINE_JOIN_ROUND: { int i; int start, step, stop; cairo_point_t tri[3]; cairo_pen_t *pen = &stroker->pen; tri[0] = in->point; if (clockwise) { _cairo_pen_find_active_ccw_vertex_index (pen, &in->dev_vector, &start); step = -1; _cairo_pen_find_active_ccw_vertex_index (pen, &out->dev_vector, &stop); } else { _cairo_pen_find_active_cw_vertex_index (pen, &in->dev_vector, &start); step = +1; _cairo_pen_find_active_cw_vertex_index (pen, &out->dev_vector, &stop); } i = start; tri[1] = *inpt; while (i != stop) { tri[2] = in->point; _translate_point (&tri[2], &pen->vertices[i].point); _cairo_traps_tessellate_triangle (stroker->traps, tri); tri[1] = tri[2]; i += step; if (i < 0) i = pen->num_vertices - 1; if (i >= pen->num_vertices) i = 0; } tri[2] = *outpt; return _cairo_traps_tessellate_triangle (stroker->traps, tri); } case CAIRO_LINE_JOIN_MITER: default: { /* dot product of incoming slope vector with outgoing slope vector */ double in_dot_out = ((-in->usr_vector.x * out->usr_vector.x)+ (-in->usr_vector.y * out->usr_vector.y)); double ml = stroker->style->miter_limit; /* * Check the miter limit -- lines meeting at an acute angle * can generate long miters, the limit converts them to bevel * * We want to know when the miter is within the miter limit. * That's straightforward to specify: * * secant (psi / 2) <= ml * * where psi is the angle between in and out * * secant(psi/2) = 1/sin(psi/2) * 1/sin(psi/2) <= ml * 1 <= ml sin(psi/2) * 1 <= ml² sin²(psi/2) * 2 <= ml² 2 sin²(psi/2) * 2·sin²(psi/2) = 1-cos(psi) * 2 <= ml² (1-cos(psi)) * * in · out = |in| |out| cos (psi) * * in and out are both unit vectors, so: * * in · out = cos (psi) * * 2 <= ml² (1 - in · out) * */ if (2 <= ml * ml * (1 - in_dot_out)) { double x1, y1, x2, y2; double mx, my; double dx1, dx2, dy1, dy2; cairo_polygon_t polygon; cairo_point_t outer; /* * we've got the points already transformed to device * space, but need to do some computation with them and * also need to transform the slope from user space to * device space */ /* outer point of incoming line face */ x1 = _cairo_fixed_to_double (inpt->x); y1 = _cairo_fixed_to_double (inpt->y); dx1 = in->usr_vector.x; dy1 = in->usr_vector.y; cairo_matrix_transform_distance (stroker->ctm, &dx1, &dy1); /* outer point of outgoing line face */ x2 = _cairo_fixed_to_double (outpt->x); y2 = _cairo_fixed_to_double (outpt->y); dx2 = out->usr_vector.x; dy2 = out->usr_vector.y; cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2); /* * Compute the location of the outer corner of the miter. * That's pretty easy -- just the intersection of the two * outer edges. We've got slopes and points on each * of those edges. Compute my directly, then compute * mx by using the edge with the larger dy; that avoids * dividing by values close to zero. */ my = (((x2 - x1) * dy1 * dy2 - y2 * dx2 * dy1 + y1 * dx1 * dy2) / (dx1 * dy2 - dx2 * dy1)); if (fabs (dy1) >= fabs (dy2)) mx = (my - y1) * dx1 / dy1 + x1; else mx = (my - y2) * dx2 / dy2 + x2; /* * Draw the quadrilateral */ outer.x = _cairo_fixed_from_double (mx); outer.y = _cairo_fixed_from_double (my); _cairo_polygon_init (&polygon); _cairo_polygon_move_to (&polygon, &in->point); _cairo_polygon_line_to (&polygon, inpt); _cairo_polygon_line_to (&polygon, &outer); _cairo_polygon_line_to (&polygon, outpt); _cairo_polygon_close (&polygon); status = _cairo_traps_tessellate_polygon (stroker->traps, &polygon, CAIRO_FILL_RULE_WINDING); _cairo_polygon_fini (&polygon); return status; } /* fall through ... */ } case CAIRO_LINE_JOIN_BEVEL: { cairo_point_t tri[3]; tri[0] = in->point; tri[1] = *inpt; tri[2] = *outpt; return _cairo_traps_tessellate_triangle (stroker->traps, tri); } }}static cairo_status_t_cairo_stroker_add_cap (cairo_stroker_t *stroker, cairo_stroke_face_t *f){ cairo_status_t status; if (stroker->style->line_cap == CAIRO_LINE_CAP_BUTT) return CAIRO_STATUS_SUCCESS; switch (stroker->style->line_cap) { case CAIRO_LINE_CAP_ROUND: { int i; int start, stop; cairo_slope_t slope; cairo_point_t tri[3]; cairo_pen_t *pen = &stroker->pen; slope = f->dev_vector; _cairo_pen_find_active_cw_vertex_index (pen, &slope, &start); slope.dx = -slope.dx; slope.dy = -slope.dy; _cairo_pen_find_active_cw_vertex_index (pen, &slope, &stop); tri[0] = f->point; tri[1] = f->cw; for (i=start; i != stop; i = (i+1) % pen->num_vertices) { tri[2] = f->point; _translate_point (&tri[2], &pen->vertices[i].point); _cairo_traps_tessellate_triangle (stroker->traps, tri); tri[1] = tri[2]; } tri[2] = f->ccw; return _cairo_traps_tessellate_triangle (stroker->traps, tri); } case CAIRO_LINE_CAP_SQUARE: { double dx, dy; cairo_slope_t fvector; cairo_point_t occw, ocw; cairo_polygon_t polygon; dx = f->usr_vector.x; dy = f->usr_vector.y; dx *= stroker->style->line_width / 2.0; dy *= stroker->style->line_width / 2.0; cairo_matrix_transform_distance (stroker->ctm, &dx, &dy); fvector.dx = _cairo_fixed_from_double (dx); fvector.dy = _cairo_fixed_from_double (dy); occw.x = f->ccw.x + fvector.dx; occw.y = f->ccw.y + fvector.dy; ocw.x = f->cw.x + fvector.dx; ocw.y = f->cw.y + fvector.dy; _cairo_polygon_init (&polygon); _cairo_polygon_move_to (&polygon, &f->cw); _cairo_polygon_line_to (&polygon, &ocw); _cairo_polygon_line_to (&polygon, &occw); _cairo_polygon_line_to (&polygon, &f->ccw); _cairo_polygon_close (&polygon); status = _cairo_traps_tessellate_polygon (stroker->traps, &polygon, CAIRO_FILL_RULE_WINDING); _cairo_polygon_fini (&polygon); return status; } case CAIRO_LINE_CAP_BUTT: default: return CAIRO_STATUS_SUCCESS; }}static cairo_status_t_cairo_stroker_add_leading_cap (cairo_stroker_t *stroker, cairo_stroke_face_t *face){ cairo_stroke_face_t reversed; cairo_point_t t; reversed = *face; /* The initial cap needs an outward facing vector. Reverse everything */ reversed.usr_vector.x = -reversed.usr_vector.x; reversed.usr_vector.y = -reversed.usr_vector.y; reversed.dev_vector.dx = -reversed.dev_vector.dx; reversed.dev_vector.dy = -reversed.dev_vector.dy; t = reversed.cw; reversed.cw = reversed.ccw; reversed.ccw = t; return _cairo_stroker_add_cap (stroker, &reversed);}static cairo_status_t_cairo_stroker_add_trailing_cap (cairo_stroker_t *stroker, cairo_stroke_face_t *face){ return _cairo_stroker_add_cap (stroker, face);}static void_compute_face (cairo_point_t *point, cairo_slope_t *slope, cairo_stroker_t *stroker, cairo_stroke_face_t *face);static cairo_status_t_cairo_stroker_add_caps (cairo_stroker_t *stroker){ cairo_status_t status; /* check for a degenerative sub_path */ if (stroker->has_sub_path && !stroker->has_first_face && !stroker->has_current_face && stroker->style->line_cap == CAIRO_LINE_JOIN_ROUND) { /* pick an arbitrary slope to use */ cairo_slope_t slope = {1, 0}; _compute_face (&stroker->first_point, &slope, stroker, &stroker->first_face); stroker->has_first_face = stroker->has_current_face = TRUE; stroker->current_face = stroker->first_face; } if (stroker->has_first_face) { status = _cairo_stroker_add_leading_cap (stroker, &stroker->first_face); if (status) return status; } if (stroker->has_current_face) { status = _cairo_stroker_add_trailing_cap (stroker, &stroker->current_face); if (status) return status; } return CAIRO_STATUS_SUCCESS;}static void_compute_face (cairo_point_t *point, cairo_slope_t *slope, cairo_stroker_t *stroker, cairo_stroke_face_t *face){ double mag, det;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -