📄 l3psy.c
字号:
tbb = -0.299 - 0.43*cbb; /* conv1=-0.299, conv2=-0.43 */
tbb = minimum( 1.0, maximum( 0.0, tbb) ) ; /* 0<tbb<1 */
SNR_l[b] = maximum( minval[b], 29.0*tbb+6.0*(1.0-tbb) );
} /* TMN=29.0,NMT=6.0 for all calculation partitions */
for ( b = 0; b < CBANDS; b++ ) /* calculate the threshold for each partition */
nb[b] = ecb[b] * norm_l[b] * exp( -SNR_l[b] * LN_TO_LOG10 );
for ( b = 0; b < CBANDS; b++ )
{ /* pre-echo control */
double temp_1; /* BUG of IS */
temp_1 = minimum( nb[b], minimum(2.0*nb_1[channel][b],16.0*nb_2[channel][b]) );
thr[b] = maximum( qthr_l[b], temp_1 );
nb_2[channel][b] = nb_1[channel][b];
nb_1[channel][b] = nb[b];
}
*pe = 0.0; /* calculate perceptual entropy */
for ( b = 0; b < CBANDS; b++ )
{
double tp ;
tp = minimum( 0.0, log((thr[b]+1.0) / (eb[b]+1.0) ) ) ; /*not log*/
*pe -= numlines[b] * tp ;
}
#define switch_pe 1800
blocktype = NORM_TYPE;
if ( *pe < switch_pe )
{ /* no attack : use long blocks */
switch( blocktype_old[channel] )
{
case NORM_TYPE:
case STOP_TYPE:
blocktype = NORM_TYPE;
break;
case SHORT_TYPE:
blocktype = STOP_TYPE;
break;
case START_TYPE:
fprintf( stderr, "Error in block selecting\n" );
abort();
break; /* problem */
}
/* threshold calculation (part 2) */
for ( sb = 0; sb < SBMAX_l; sb++ )
{
en[sb] = w1_l[sb] * eb[bu_l[sb]] + w2_l[sb] * eb[bo_l[sb]];
thm[sb] = w1_l[sb] *thr[bu_l[sb]] + w2_l[sb] * thr[bo_l[sb]];
for ( b = bu_l[sb]+1; b < bo_l[sb]; b++ )
{
en[sb] += eb[b];
thm[sb] += thr[b];
}
if ( en[sb] != 0.0 )
ratio[channel][sb] = thm[sb]/en[sb];
else
ratio[channel][sb] = 0.0;
}
}
else
{
/* attack : use short blocks */
blocktype = SHORT_TYPE;
if(blocktype_old[channel]==NORM_TYPE) blocktype_old[channel] = START_TYPE;
if(blocktype_old[channel]==STOP_TYPE) blocktype_old[channel] = SHORT_TYPE ;
/* threshold calculation for short blocks */
for ( sblock = 0; sblock < 3; sblock++ )
{
for ( b = 0; b < CBANDS_s; b++ )
{
eb[b] = 0.0;
ecb[b] = 0.0;
}
for ( j = 0; j < HBLKSIZE_s; j++ ) eb[partition_s[j]] += energy_s[sblock][j];
for ( b = 0; b < CBANDS_s; b++ )
for ( k = 0; k < CBANDS_s; k++ )
ecb[b] += s3_l[b][k] * eb[k];
for ( b = 0; b < CBANDS_s; b++ )
{
nb[b] = ecb[b] * norm_l[b] * exp((double)SNR_s[b]*LN_TO_LOG10);
thr[b] = maximum(qthr_s[b],nb[b]);
}
for ( sb = 0; sb < SBMAX_s; sb++ )
{
en[sb] = w1_s[sb] * eb[bu_s[sb]] + w2_s[sb] * eb[bo_s[sb]];
thm[sb] = w1_s[sb] *thr[bu_s[sb]] + w2_s[sb] * thr[bo_s[sb]];
for ( b = bu_s[sb]+1; b < bo_s[sb]; b++ )
{
en[sb] += eb[b];
thm[sb] += thr[b];
}
if(en[sb]!=0.0) ratio_s[channel][sb][sblock] = thm[sb]/en[sb];
else ratio_s[channel][sb][sblock] = 0.0;
}
}
}
cod_info->block_type = blocktype_old[channel];
blocktype_old[channel] = blocktype;
if ( cod_info->block_type == NORM_TYPE )
cod_info->window_switching_flag = 0;
else
cod_info->window_switching_flag = 1;
cod_info->mixed_block_flag = 0;
}
#include "psy_data.h"
void L3para_read()
{
int curr_line = 0;
char *temp;
double freq_tp;
static double bval_l[CBANDS], bval_s[CBANDS];
int cbmax=0, cbmax_tp;
static double s3_s[CBANDS][CBANDS];
char tp[256];
int sbmax ;
int i,j,k,k2,loop, part_max ;
/* Read long block data */
for(loop=0;loop<6;loop++)
{
temp = psy_data[curr_line++];
sscanf(temp,"freq = %lf partition = %d\n",&freq_tp,&cbmax_tp);
cbmax_tp++;
if (config.wave.samplerate == freq_tp)
{
cbmax = cbmax_tp;
for(i=0,k2=0;i<cbmax_tp;i++)
{
temp = psy_data[curr_line++];
sscanf(temp,
"No=%d #lines=%d minval=%lf qthr=%lf norm=%lf bval=%lf\n",
&j,&numlines[i],&minval[i],&qthr_l[i],&norm_l[i],&bval_l[i]);
if (j!=i)
{ printf("please check \"psy_data\"");
exit(-1);
}
for(k=0;k<numlines[i];k++)
partition_l[k2++] = i ;
}
}
else
{
for(j=0;j<cbmax_tp;j++)
{
char *temp;
temp = psy_data[curr_line++];
sscanf(temp,"No=%d %s\n",&i,tp);
if (j!=i)
{ printf("please check \"psy_data.\"\n");
exit(-1);
}
}
}
}
/************************************************************************
* Now compute the spreading function, s[j][i], the value of the spread-*
* ing function, centered at band j, for band i, store for later use *
************************************************************************/
part_max = cbmax ;
for(i=0;i<part_max;i++)
{
double tempx,x,tempy,temp;
for(j=0;j<part_max;j++)
{
tempx = (bval_l[i] - bval_l[j])*1.05;
if (j>=i) tempx = (bval_l[i] - bval_l[j])*3.0;
else tempx = (bval_l[i] - bval_l[j])*1.5;
if(tempx>=0.5 && tempx<=2.5)
{
temp = tempx - 0.5;
x = 8.0 * (temp*temp - 2.0 * temp);
}
else x = 0.0;
tempx += 0.474;
tempy = 15.811389 + 7.5*tempx - 17.5*sqrt(1.0+tempx*tempx);
if (tempy <= -60.0) s3_l[i][j] = 0.0;
else s3_l[i][j] = exp( (x + tempy)*LN_TO_LOG10 );
}
}
/* Read short block data */
for(loop=0;loop<6;loop++)
{
temp = psy_data[curr_line++];
sscanf(temp,"freq = %lf partition = %d\n",&freq_tp,&cbmax_tp);
cbmax_tp++;
if (config.wave.samplerate==freq_tp)
{
cbmax = cbmax_tp;
for(i=0,k2=0;i<cbmax_tp;i++)
{
temp = psy_data[curr_line++];
sscanf(temp,
"No=%d #lines=%d qthr=%lf norm=%lf SNR=%lf bval=%lf\n",
&j,&numlines[i],&qthr_s[i],&norm_s[i],&SNR_s[i],&bval_s[i]);
if (j!=i)
{ printf("please check \"psy_data\"");
exit(-1);
}
for(k=0;k<numlines[i];k++)
partition_s[k2++] = i ;
}
}
else
{
for(j=0;j<cbmax_tp;j++)
{
temp = psy_data[curr_line++];
sscanf(temp,"No=%d %s\n",&i,tp);
if (j!=i)
{ printf("please check \"psy_data.\"\n");
exit(-1);
}
}
}
}
/************************************************************************
* Now compute the spreading function, s[j][i], the value of the spread-*
* ing function, centered at band j, for band i, store for later use *
************************************************************************/
part_max = cbmax ;
for(i=0;i<part_max;i++)
{
double tempx,x,tempy,temp;
for(j=0;j<part_max;j++)
{
tempx = (bval_s[i] - bval_s[j])*1.05;
if (j>=i) tempx = (bval_s[i] - bval_s[j])*3.0;
else tempx = (bval_s[i] - bval_s[j])*1.5;
if(tempx>=0.5 && tempx<=2.5)
{
temp = tempx - 0.5;
x = 8.0 * (temp*temp - 2.0 * temp);
}
else x = 0.0;
tempx += 0.474;
tempy = 15.811389 + 7.5*tempx - 17.5*sqrt(1.0+tempx*tempx);
if (tempy <= -60.0) s3_s[i][j] = 0.0;
else s3_s[i][j] = exp( (x + tempy)*LN_TO_LOG10 );
}
}
/* Read long block data for converting threshold calculation
partitions to scale factor bands */
for(loop=0;loop<6;loop++)
{
temp = psy_data[curr_line++];
sscanf(temp,"freq=%lf sb=%d\n",&freq_tp,&sbmax);
sbmax++;
if (config.wave.samplerate== freq_tp)
{
for(i=0;i<sbmax;i++)
{
temp = psy_data[curr_line++];
sscanf(temp,
"sb=%d cbw=%d bu=%d bo=%d w1=%lf w2=%lf\n",
&j,&cbw_l[i],&bu_l[i],&bo_l[i],&w1_l[i],&w2_l[i]);
if (j!=i)
{ printf("30:please check \"psy_data\"\n");
exit(-1);
}
if (i!=0)
if ( (bo_l[i] != (bu_l[i]+cbw_l[i])) ||
(fabs(1.0-w1_l[i]-w2_l[i-1]) > 0.01 ) )
{ printf("31:please check \"psy_data.\"\n");
exit(-1);
}
}
}
else
{
for(j=0;j<sbmax;j++)
{
temp = psy_data[curr_line++];
sscanf(temp,"sb=%d %s\n",&i,tp);
if (j!=i)
{ printf("please check \"psy_data.\"\n");
exit(-1);
}
}
}
}
/* Read short block data for converting threshold calculation
partitions to scale factor bands */
for(loop=0;loop<6;loop++)
{
temp = psy_data[curr_line++];
sscanf(temp,"freq=%lf sb=%d\n",&freq_tp,&sbmax);
sbmax++;
if (config.wave.samplerate == freq_tp)
{
for(i=0;i<sbmax;i++)
{
temp = psy_data[curr_line++];
sscanf(temp,
"sb=%d cbw=%d bu=%d bo=%d w1=%lf w2=%lf\n",
&j,&cbw_s[i],&bu_s[i],&bo_s[i],&w1_s[i],&w2_s[i]);
if (j!=i)
{ printf("30:please check \"psy_data\"\n");
exit(-1);
}
if (i!=0)
if ( (bo_s[i] != (bu_s[i]+cbw_s[i])) ||
(fabs(1.0-w1_s[i]-w2_s[i-1]) > 0.01 ) )
{ printf("31:please check \"psy_data.\"\n");
exit(-1);
}
}
}
else
{
for(j=0;j<sbmax;j++)
{
temp = psy_data[curr_line++];
sscanf(temp,"sb=%d %s\n",&i,tp);
if (j!=i)
{ printf("please check \"psy_data.\"\n");
exit(-1);
}
}
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -