📄 access.c
字号:
/*
* access.c -- the files with access control on open
*
* Copyright (C) 2001 Alessandro Rubini and Jonathan Corbet
* Copyright (C) 2001 O'Reilly & Associates
*
* The source code in this file can be freely used, adapted,
* and redistributed in source or binary form, so long as an
* acknowledgment appears in derived source files. The citation
* should list that the code comes from the book "Linux Device
* Drivers" by Alessandro Rubini and Jonathan Corbet, published
* by O'Reilly & Associates. No warranty is attached;
* we cannot take responsibility for errors or fitness for use.
*
* $Id: access.c,v 1.21 2001/07/18 22:28:16 rubini Exp $
*/
#ifndef __KERNEL__
# define __KERNEL__
#endif
#ifndef MODULE
# define MODULE
#endif
#define __NO_VERSION__
#include <linux/module.h> /* get MOD_DEC_USE_COUNT, not the version string */
#include <linux/version.h> /* need it for conditionals in scull.h */
#include <linux/kernel.h> /* printk() */
#include <linux/malloc.h> /* kmalloc() */
#include <linux/fs.h> /* everything... */
#include <linux/errno.h> /* error codes */
#include <linux/types.h> /* size_t */
#include <linux/fcntl.h>
#include <linux/tty.h> /* current->tty */
#include "scull.h" /* local definitions */
/*
* These devices fall back on the main scull operations. They only
* differ in the implementation of open() and close()
*/
/*
* The following deals with some of the 2.2 API changes.
*/
#ifdef LINUX_20
extern int scull_lseek_20(struct inode *ino, struct file *f, off_t offset,
int whence);
extern int scull_read_20(struct inode *ino, struct file *f, char *buf,
int count);
extern int scull_write_20(struct inode *ino, struct file *f, const char *buf,
int count);
#define scull_llseek scull_lseek_20
#define scull_read scull_read_20
#define scull_write scull_write_20
#endif
/************************************************************************
*
* The first device is the single-open one,
* it has an hw structure and an open count
*/
Scull_Dev scull_s_device;
int scull_s_count = 0;
spinlock_t scull_s_lock;
int scull_s_open(struct inode *inode, struct file *filp)
{
Scull_Dev *dev = &scull_s_device; /* device information */
int num = NUM(inode->i_rdev);
if (!filp->private_data && num > 0)
return -ENODEV; /* not devfs: allow 1 device only */
spin_lock(&scull_s_lock);
if (scull_s_count) {
spin_unlock(&scull_s_lock);
return -EBUSY; /* already open */
}
scull_s_count++;
spin_unlock(&scull_s_lock);
/* then, everything else is copied from the bare scull device */
if ( (filp->f_flags & O_ACCMODE) == O_WRONLY)
scull_trim(dev);
if (!filp->private_data)
filp->private_data = dev;
MOD_INC_USE_COUNT;
return 0; /* success */
}
int scull_s_release(struct inode *inode, struct file *filp)
{
scull_s_count--; /* release the device */
MOD_DEC_USE_COUNT;
return 0;
}
#ifdef LINUX_20
void scull_s_release_20(struct inode *ino, struct file *f)
{
scull_s_release(ino, f);
}
#define scull_s_release scull_s_release_20
#define llseek lseek
#endif
/*
* The other operations for the single-open device come from the bare device
*/
struct file_operations scull_sngl_fops = {
llseek: scull_llseek,
read: scull_read,
write: scull_write,
ioctl: scull_ioctl,
open: scull_s_open,
release: scull_s_release,
};
/************************************************************************
*
* Next, the "uid" device. It can be opened multiple times by the
* same user, but access is denied to other users if the device is open
*/
Scull_Dev scull_u_device;
int scull_u_count = 0;
uid_t scull_u_owner = 0;
spinlock_t scull_u_lock;
int scull_u_open(struct inode *inode, struct file *filp)
{
Scull_Dev *dev = &scull_u_device; /* device information */
int num = NUM(inode->i_rdev);
if (!filp->private_data && num > 0)
return -ENODEV; /* not devfs: allow 1 device only */
spin_lock(&scull_u_lock);
if (scull_u_count &&
(scull_u_owner != current->uid) && /* allow user */
(scull_u_owner != current->euid) && /* allow whoever did su */
!capable(CAP_DAC_OVERRIDE)) { /* still allow root */
spin_unlock(&scull_u_lock);
return -EBUSY; /* -EPERM would confuse the user */
}
if (scull_u_count == 0)
scull_u_owner = current->uid; /* grab it */
scull_u_count++;
spin_unlock(&scull_u_lock);
/* then, everything else is copied from the bare scull device */
if ( (filp->f_flags & O_ACCMODE) == O_WRONLY)
scull_trim(dev);
if (!filp->private_data)
filp->private_data = dev;
MOD_INC_USE_COUNT;
return 0; /* success */
}
int scull_u_release(struct inode *inode, struct file *filp)
{
scull_u_count--; /* nothing else */
MOD_DEC_USE_COUNT;
return 0;
}
#ifdef LINUX_20
void scull_u_release_20(struct inode *ino, struct file *f)
{
scull_u_release(ino, f);
}
#define scull_u_release scull_u_release_20
#endif
/*
* The other operations for the device come from the bare device
*/
struct file_operations scull_user_fops = {
llseek: scull_llseek,
read: scull_read,
write: scull_write,
ioctl: scull_ioctl,
open: scull_u_open,
release: scull_u_release,
};
/************************************************************************
*
* Next, the device with blocking-open based on uid
*/
Scull_Dev scull_w_device;
int scull_w_count = 0;
uid_t scull_w_owner = 0;
static DECLARE_WAIT_QUEUE_HEAD(scull_w_wait);
spinlock_t scull_w_lock;
int scull_w_open(struct inode *inode, struct file *filp)
{
Scull_Dev *dev = &scull_w_device; /* device information */
int num = NUM(inode->i_rdev);
if (!filp->private_data && num > 0)
return -ENODEV; /* not devfs: allow 1 device only */
spin_lock(&scull_w_lock);
while (scull_w_count &&
(scull_w_owner != current->uid) && /* allow user */
(scull_w_owner != current->euid) && /* allow whoever did su */
!capable(CAP_DAC_OVERRIDE)) {
spin_unlock(&scull_w_lock);
if (filp->f_flags & O_NONBLOCK) return -EAGAIN;
interruptible_sleep_on(&scull_w_wait);
if (signal_pending(current)) /* a signal arrived */
return -ERESTARTSYS; /* tell the fs layer to handle it */
/* else, loop */
spin_lock(&scull_w_lock);
}
if (scull_w_count == 0)
scull_w_owner = current->uid; /* grab it */
scull_w_count++;
spin_unlock(&scull_w_lock);
/* then, everything else is copied from the bare scull device */
if ( (filp->f_flags & O_ACCMODE) == O_WRONLY)
scull_trim(dev);
if (!filp->private_data)
filp->private_data = dev;
MOD_INC_USE_COUNT;
return 0; /* success */
}
int scull_w_release(struct inode *inode, struct file *filp)
{
scull_w_count--;
if (scull_w_count == 0)
wake_up_interruptible(&scull_w_wait); /* awake other uid's */
MOD_DEC_USE_COUNT;
return 0;
}
#ifdef LINUX_20
void scull_w_release_20(struct inode *ino, struct file *f)
{
scull_w_release(ino, f);
}
#define scull_w_release scull_w_release_20
#endif
/*
* The other operations for the device come from the bare device
*/
struct file_operations scull_wusr_fops = {
llseek: scull_llseek,
read: scull_read,
write: scull_write,
ioctl: scull_ioctl,
open: scull_w_open,
release: scull_w_release,
};
/************************************************************************
*
* Finally the `cloned' private device. This is trickier because it
* involves list management, and dynamic allocation.
*/
devfs_handle_t scull_priv_handle; /* only used if devfs is there */
/* The clone-specific data structure includes a key field */
struct scull_listitem {
Scull_Dev device;
int key;
struct scull_listitem *next;
};
/* The list of devices, and a lock to protect it */
struct scull_listitem *scull_c_head;
spinlock_t scull_c_lock;
/* Look for a device or create one if missing */
static Scull_Dev *scull_c_lookfor_device(int key)
{
struct scull_listitem *lptr, *prev = NULL;
for (lptr = scull_c_head; lptr && (lptr->key != key); lptr = lptr->next)
prev=lptr;
if (lptr) return &(lptr->device);
/* not found */
lptr = kmalloc(sizeof(struct scull_listitem), GFP_ATOMIC);
if (!lptr) return NULL;
/* initialize the device */
memset(lptr, 0, sizeof(struct scull_listitem));
lptr->key = key;
scull_trim(&(lptr->device)); /* initialize it */
sema_init(&(lptr->device.sem), 1);
/* place it in the list */
if (prev) prev->next = lptr;
else scull_c_head = lptr;
return &(lptr->device);
}
int scull_c_open(struct inode *inode, struct file *filp)
{
Scull_Dev *dev;
int key, num = NUM(inode->i_rdev);
if (!filp->private_data && num > 0)
return -ENODEV; /* not devfs: allow 1 device only */
if (!current->tty) {
PDEBUG("Process \"%s\" has no ctl tty\n",current->comm);
return -EINVAL;
}
key = MINOR(current->tty->device);
/* look for a scullc device in the list */
spin_lock(&scull_c_lock);
dev = scull_c_lookfor_device(key);
spin_unlock(&scull_c_lock);
if (!dev) return -ENOMEM;
/* then, everything else is copied from the bare scull device */
if ( (filp->f_flags & O_ACCMODE) == O_WRONLY)
scull_trim(dev);
filp->private_data = dev;
MOD_INC_USE_COUNT;
return 0; /* success */
}
int scull_c_release(struct inode *inode, struct file *filp)
{
/*
* Nothing to do, because the device is persistent.
* A `real' cloned device should be freed on last close
*/
MOD_DEC_USE_COUNT;
return 0;
}
#ifdef LINUX_20
void scull_c_release_20(struct inode *ino, struct file *f)
{
scull_c_release(ino, f);
}
#define scull_c_release scull_c_release_20
#endif
/*
* The other operations for the device come from the bare device
*/
struct file_operations scull_priv_fops = {
llseek: scull_llseek,
read: scull_read,
write: scull_write,
ioctl: scull_ioctl,
open: scull_c_open,
release: scull_c_release,
};
/************************************************************************
*
* And the init and cleanup functions come last
*/
int scull_access_init(void)
{
/* assign quantum and quantumset */
scull_s_device.quantum = scull_quantum;
scull_s_device.qset = scull_qset;
scull_u_device.quantum = scull_quantum;
scull_u_device.qset = scull_qset;
scull_w_device.quantum = scull_quantum;
scull_w_device.qset = scull_qset;
/* Initialize spinlocks */
spin_lock_init(&scull_s_lock);
spin_lock_init(&scull_u_lock);
spin_lock_init(&scull_w_lock);
spin_lock_init(&scull_c_lock);
/* and semaphores (used by read and write) */
sema_init(&scull_s_device.sem, 1);
sema_init(&scull_u_device.sem, 1);
sema_init(&scull_w_device.sem, 1);
/* and file operations owners */
SET_MODULE_OWNER(&scull_sngl_fops);
SET_MODULE_OWNER(&scull_user_fops);
SET_MODULE_OWNER(&scull_wusr_fops);
SET_MODULE_OWNER(&scull_priv_fops);
#ifdef CONFIG_DEVFS_FS
/* finally, create the devfs entry points */
scull_s_device.handle =
devfs_register(scull_devfs_dir, "single",
DEVFS_FL_AUTO_DEVNUM,
0, 0, S_IFCHR | S_IRUGO | S_IWUGO,
&scull_sngl_fops,
&scull_s_device);
scull_u_device.handle =
devfs_register(scull_devfs_dir, "user",
DEVFS_FL_AUTO_DEVNUM,
0, 0, S_IFCHR | S_IRUGO | S_IWUGO,
&scull_user_fops,
&scull_u_device);
scull_w_device.handle =
devfs_register(scull_devfs_dir, "wuser",
DEVFS_FL_AUTO_DEVNUM,
0, 0, S_IFCHR | S_IRUGO | S_IWUGO,
&scull_wusr_fops,
&scull_w_device);
scull_priv_handle =
devfs_register(scull_devfs_dir, "priv",
DEVFS_FL_AUTO_DEVNUM,
0, 0, S_IFCHR | S_IRUGO | S_IWUGO,
&scull_priv_fops,
&scull_priv_fops); /* any non-null value */
#endif
return 0;
}
/*
* This is called by cleanup_module or on failure.
* It is required to never fail, even if nothing was initialized first
*/
void scull_access_cleanup(void)
{
struct scull_listitem *lptr, *prev;
scull_trim(&scull_s_device); /* disallocate it */
scull_trim(&scull_u_device); /* disallocate it */
scull_trim(&scull_w_device); /* disallocate it */
/* all the cloned devices */
prev=NULL;
for (lptr = scull_c_head; lptr; lptr = lptr->next) {
scull_trim(&(lptr->device));
if (prev) kfree(prev);
prev=lptr;
}
if (prev) kfree(prev);
scull_c_head = NULL; /* overkill: we're unloading anyways */
/* remove devfs entry points */
devfs_unregister(scull_s_device.handle);
devfs_unregister(scull_u_device.handle);
devfs_unregister(scull_w_device.handle);
devfs_unregister(scull_priv_handle);
return;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -