⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gettingstarted.htm

📁 遗传算法GPE_release_v1.0.tar
💻 HTM
字号:
<html>

<head>
<meta name="GENERATOR" content="Microsoft FrontPage 5.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>Genetic Programming FAQ</title>
</head>

<body>

<div id="nsbanner">
  <table cellSpacing="0" cellPadding="0" width="100%" border="0">
    <tr>
      <td>
      <div id="bannerrow1">
        <table class="bannerparthead" cellSpacing="0">
          <tr id="hdr">
            <td class="runninghead" style="font-size: 70%">
            <font face="Arial"><a class="show" id="design_toggle" title="Show or hide design notes" href="index.html"><img src="Images/Icons/G.png" width="14" height="14" border="0" align="middle"/></a> Genetic Programming Engine FAQ</font></td>
          </tr>
        </table>
      </div>
      <div id="TitleRow">
        <h1 class="dtH1" style="font-size: 85%; left: 5px; position: relative">
        <font face="Arial">Getting Started with Genetic Programming (GP)</font></h1>
      </div>
      </td>
      <td vAlign="top" align="right">
      <font face="Arial">
      <img src="Images/Icons/GP_blue.png" width="191" height="39"></font></td>
    </tr>
  </table>
</div>
<div id="nstext">
  <p class="MsoNormal"><span lang="EN-GB" style="font-family:Arial">
  <a href="Glossary.GeneticProgramming.html">Genetic 
  Programming</a> (GP) is a subset of 
  <a href="Glossary.EvolutionaryAlgorithms.html">evolutionary programming</a>.&nbsp; GP mimics 
  strategies based on evolution - namely natural 
  <a href="Glossary.GeneticOperations.selection.html">selection</a> and 
  <a href="Glossary.GeneticOperations.mutation.html">mutation</a>.&nbsp; GP can 
  be used to find solutions to a wide range of problems from the Travelling 
  Salesman Problem to the Artificial Ant Problem.&nbsp; The central method for 
  problem solving with GP remains basically the same for different types of 
  problems.&nbsp; </span></p>
  <p class="MsoNormal"><span style="font-family: Arial" lang="en-gb">A Genetic 
	Programming Engine (<b>GPE</b></span><b><span style="font-family: Arial">ngine</span></b><span style="font-family: Arial" lang="en-gb">) uses an evolutionary algorithm to optimize a 
	</span><span style="font-family: Arial; font-weight:700">
  <a href="Glossary.Objects.Population.html">Population</a></span><span style="font-family: Arial" lang="en-gb"> of  </span>
  <span style="font-family: Arial"><a href="Glossary.Objects.Individual.html">
  individual</a> </span><span style="font-family: Arial" lang="en-gb">computer programs (</span><span style="font-family: Arial; font-weight:700">IIndividuals</span><span style="font-family: Arial" lang="en-gb">) according to 
  <a href="Glossary.Properties.fitness.html">fitness</a> 
	specifications determined by a program's ability to perform a given task.&nbsp;
	</span><span lang="EN-GB" style="font-family:Arial">First, a 
   
  </span><span style="font-family:Arial">random Population</span><span lang="EN-GB" style="font-family:Arial"> of  </span>
  <span style="font-family:Arial">II</span><span lang="EN-GB" style="font-family:Arial">individuals 
  is created from the </span><span style="font-family:Arial">II</span><span lang="EN-GB" style="font-family:Arial">individual</span><span style="font-family:Arial">
  <i>Base</i></span><i><span lang="EN-GB" style="font-family:Arial"> </span>
  <span style="font-family:Arial">C</span><span lang="EN-GB" style="font-family:Arial">lass</span></i><span lang="EN-GB" style="font-family:Arial">, 
  a possible solution to the problem.&nbsp; Next, the </span>
  <span style="font-family:Arial">engine is <a href="Glossary.Actions.run.html">
  ran</a> and II</span><span lang="EN-GB" style="font-family:Arial">individuals 
  are </span><span style="font-family:Arial">
  <a href="Glossary.Actions.test.html">tested</a></span><span lang="EN-GB" style="font-family:Arial"> in an </span>
  <span style="font-family:Arial"><a href="Glossary.Objects.Environment.html">
  environment</a> (see also </span><span style="font-family:Arial; font-weight:700">
  IEnvironment</span><span style="font-family:Arial">)</span><span lang="EN-GB" style="font-family:Arial"> and the 
  fitness of each individual is measured.&nbsp; </span>
  <span style="font-family:Arial">The <a href="Glossary.Objects.History.html">
  history</a> of each individual is stored in the <b>IGraphicHistory</b> which 
  allows the individual's actions within a population to be replayed.&nbsp; </span>
  <span lang="EN-GB" style="font-family:Arial">The fittest solutions, as 
  defined in the problem, are selected and then
  <a href="Glossary.GeneticOperations.recombination.html">recombined</a> with each other 
  and/or <a href="Glossary.GeneticOperations.mutation.html">mutated</a> to form the next 
  <a href="Glossary.Objects.Generation.html">generation</a> of </span>
  <span style="font-family:Arial">IIndividuals</span><span lang="EN-GB" style="font-family:Arial">.&nbsp; 
  The process is then repeated until the user-defined number of iterations is 
  reached or a solution is found.</span></p>
  <h4 class="dtH4" style="margin-top: 0; margin-bottom: 0"><font face="Arial"><span style="font-weight: 400">This FAQ 
	uses the Artificial Ant as an example of problem solving with GP.&nbsp; This 
	problem deals with finding the shortest path an Ant can travel to get the 
	maximum amount of food - that is maximizing fitness.&nbsp; The food particles are placed on an NxN grid 
	and the Ant is made to start from a particular corner gathering as much food 
	as possible and traveling the least distance possible.&nbsp; The ants 
  performing this task have only a limited number of actions available to them. 
  They can turn left or right, move forward, and check for food in the square 
  they are facing. The basic ants cannot see the gaps.&nbsp; The first 
  generation of ants is created randomly and usually exhibits poor performance. 
  Each succeeding generation is built from the best ants found in the previous 
  generation and, as new combinations of actions are found, the overall fitness 
  of the population tends to improve. However, <em>Genetic Programming</em> is 
  based in randomness and probability, so there are no guarantees that a 
  solution will be found in any given run. With each successive run, though, the 
  probability of success increases.&nbsp; Microsoft Visual C# 
	.NET is the language used for development of the GPEngine and examples.</span></font></h4>
  <h4 class="dtH4"><font face="Arial">See Also</font></h4>
  <p align="left">
  <font face="Arial"><a href="EngineGUI.htm">Getting Started with the Engine GUI</a> | <a href="GeneticProgrammingEngine/GPE.htm">GPEngine</a> | <a href="GeneticProgrammingEngine/ProblemSpace/Environment.htm">IEnvironment</a> 
  | <a href="GeneticProgrammingEngine/ProblemSpace/History.htm">IGraphicHistory</a> 
  | <a href="GeneticProgrammingEngine/ProblemSpace/Individual.htm">IIndividual</a> |
  <a href="GeneticProgrammingEngine/Internal/Population.htm">Population</a></font></p>
  <hr>
  <div id="footer">
    <font face="Arial">
    <a href="http://www.opensource.org/" target="_top">
    <img style="padding-bottom: 5px" src="http://opensource.org/trademarks/open_source_button.png" align="left" border="0"></a> 
    This software licensed under the
    <a href="http://opensource.org/licenses/afl-2.1.php" target="_top">Academic 
    Free License version 2.1</a>. (<a href="afl-2.1.txt">Plain 
    text</a>)</font></div>
</div>

</body>

</html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -