📄 postlssvm.m
字号:
function [model,Yt] = postlssvm(model,Xt,Yt)% Postprocessing of the LS-SVM%% These functions should only be called by trainlssvm or by% simlssvm. At first the preprocessing assigns a label to each in-% and output component (c for continuous, a for categorical or b% for binary variables). According to this label each dimension is rescaled:% % * continuous: zero mean and unit variance% * categorical: no preprocessing% * binary: labels -1 and +1% % Full syntax (only using the object oriented interface):% % >> model = postssvm(model)% >> Xp = postlssvm(model, Xt)% >> [empty, Yp] = postlssvm(model, [], Yt)% >> [Xp, Yp] = postlssvm(model, Xt, Yt)% % Outputs % model : Preprocessed object oriented representation of the LS-SVM model% Xt : Nt x d matrix with the inputs of the test data to preprocess% Yt : Nt x d matrix with the outputs of the test data to preprocess% Inputs % model : Object oriented representation of the LS-SVM model% Xp : Nt x d matrix with the preprocessed inputs of the test data% Yp : Nt x d matrix with the preprocessed outputs of the test data% % % See also:% prelssvm, trainlssvm% Copyright (c) 2002, KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlab%% test of postprocessing needed, and if model is properly coded before% decoding %if model.preprocess(1)~='p', if nargin>=2, % no postprocessing nor coding needed model=Xt; end returnend%% postprocess the LS-SVM%if nargin==1, % % execute rescaling as defined % if (model.prestatus(1)=='o' & model.preprocess(1)=='p') | ... % 'preprocess' &'ok' (model.prestatus(1)=='c' & model.preprocess(1)=='o'), % 'original' &'changed' model=postmodel(model); model.preprocess = 'original'; end model.prestatus='ok'; % % rescaling of the to simulate inputs %else eval('Yt;','Yt=[];'); [model,Yt] = postmodel(model,Xt,Yt);endfunction [model,Yt] = postmodel(model,Xt,Yt)%% ' [Xt,Yt] = postmodel(model,Xt,Yt)'% ' [model] = postmodel(model)'%if nargin==1, for i=1:model.x_dim, % CONTINU VARIABLE: if model.pre_xscheme(i)=='c', model.xtrain(:,i) = post_zmuv(model.xtrain(:,i),model.pre_xmean(i),model.pre_xstd(i)); % CATHEGORICAL VARIBALE: elseif model.pre_xscheme(i)=='a', model.xtrain(:,i) = post_cat(model.xtrain(:,i),model.pre_xmean(i),model.pre_xstd(i)); % BINARY VARIBALE: elseif model.pre_xscheme(i)=='b', model.xtrain(:,i) = post_bin(model.xtrain(:,i),model.pre_xmean(i),model.pre_xstd(i)); end end for i=1:model.y_dim, % CONTINU VARIABLE: if model.pre_yscheme(i)=='c', model.ytrain(:,i) = post_zmuv(model.ytrain(:,i),model.pre_ymean(i),model.pre_ystd(i)); % CATHEGORICAL VARIBALE: elseif model.pre_yscheme(i)=='a', model.ytrain(:,i) = post_cat(model.ytrain(:,i),model.pre_ymean(i),model.pre_ystd(i)); % BINARY VARIBALE: elseif model.pre_yscheme(i)=='b', model.ytrain(:,i) = post_bin(model.ytrain(:,i),model.pre_ymean(i),model.pre_ystd(i)); end endelse if nargin>1, % testdayta Xt, if ~isempty(Xt), if size(Xt,2)~=model.x_dim, warning('dimensions of Xt not compatible with dimensions of supprt vectors...');end for i=1:model.x_dim, % CONTINU VARIABLE: if model.pre_xscheme(i)=='c', Xt(:,i) = post_zmuv(Xt(:,i),model.pre_xmean(i),model.pre_xstd(i)); % CATHEGORICAL VARIBALE: elseif model.pre_xscheme(i)=='a', Xt(:,i) = post_cat(Xt(:,i),model.pre_xmean(i),model.pre_xstd(i)); % BINARY VARIBALE: elseif model.pre_xscheme(i)=='b', Xt(:,i) = post_bin(Xt(:,i),model.pre_xmean(i),model.pre_xstd(i)); end end end if nargin>2 & ~isempty(Yt), if size(Yt,2)~=model.y_dim, warning('dimensions of Yt not compatible with dimensions of supprt vectors...');end for i=1:model.y_dim, % CONTINU VARIABLE: if model.pre_yscheme(i)=='c', Yt(:,i) = post_zmuv(Yt(:,i),model.pre_ymean(i), model.pre_ystd(i)); % CATHEGORICAL VARIBALE: elseif model.pre_yscheme(i)=='a', Yt(:,i) = post_cat(Yt(:,i),model.pre_ymean(i),model.pre_ystd(i)); % BINARY VARIBALE: elseif model.pre_yscheme(i)=='b', Yt(:,i) = post_bin(Yt(:,i),model.pre_ymean(i),model.pre_ystd(i)); end end end model = Xt; endendfunction X = post_zmuv(X,mean,var)%% postprocessing a continu signal; rescaling to zero mean and unit% variance % 'c'%X = X.*var+mean;function X = post_cat(X,mean,range)%% postprocessing a cathegorical signal, rescaling to -1:1;% 'a'%X = X;function X = post_bin(X,min,max)%% postprocessing a binary signal, rescaling to -1:1;% 'a'%X = min.*(X<=0)+max.*(X>0);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -