📄 trainlssvm.m
字号:
function [model,b,X,Y] = trainlssvm(model,X,Y) % Train the support values and the bias term of an LS-SVM for classification or function approximation% % >> [alpha, b] = trainlssvm({X,Y,type,gam,kernel_par,kernel,preprocess})% >> model = trainlssvm(model)% % type can be 'classifier' or 'function estimation' (these strings% can be abbreviated into 'c' or 'f', respectively). X and Y are% matrices holding the training input and output data. The i-th% data point is represented by the i-th row X(i,:) and Y(i,:). gam% is the regularization parameter: for gam low minimizing of the% complexity of the model is emphasized, for gam high, good fitting% of the training data points is stressed. kernel_par is the% parameter of the kernel; in the common case of an RBF kernel, a% large sig2 indicates a stronger smoothing. The kernel_type% indicates the function that is called to compute the kernel value% (by default RBF_kernel). Other kernels can be used for example: % % >> [alpha, b] = trainlssvm({X,Y,type,gam,[d p],'poly_kernel'})% >> [alpha, b] = trainlssvm({X,Y,type,gam,[] ,'lin_kernel'})% % The kernel parameter(s) are passed as a row vector, in the case% no kernel parameter is needed, pass the empty vector! % % The training can either be proceeded by the preprocessing% function ('preprocess') (by default) or not ('original'). The% training calls the preprocessing (prelssvm, postlssvm) and the% encoder (codelssvm) if appropiate. % % In the remainder of the text, the content of the cell determining% the LS-SVM is given by {X,Y, type, gam, sig2}. However, the% additional arguments in this cell can always be added in the% calls. % % If one uses the object oriented interface (see also A.3.14), the training is done by% % >> model = trainlssvm(model)% >> model = trainlssvm(model, X, Y)% % The status of the model checks whether a retraining is% needed. The extra arguments X, Y allow to re-initialize the model% with this new training data as long as its dimensions are the% same as the old initiation. % % Three training implementations are included:% % * The C-implementation linked with CMEX: this implementation% is based on the iterative solver Conjugate Gradient algorithm% (CG) (lssvm.mex*). After this training call, a '-' is% displayed. This is recommended for use on larger data sets. % % * The C-implementation called via a buffer file: this is% based on CG; check if the executable 'lssvmFILE.x' is in the% current directory; (lssvmFILE.x). After this training call, a% '-' is displayed. % % * The Matlab implementation: a straightforward implementation% based on the matrix division '\' (lssvmMATLAB.m). After this% training call, a '~' is displayed. This is recommended for a% number of training data points smaller than 500 (depending on% the computer memory). % % By default, the cmex implementation is called. If this one fails,% the Matlab implementation is chosen instead. One can specify% explicitly which implementation to use using the object oriented% interface. % % This implementation allows to train a multidimensional output% problem. If each output uses the same kernel type, kernel% parameters and regularization parameter, this is% straightforward. If not so, one can specify the different types% and/or parameters as a row vector in the appropriate% argument. Each dimension will be trained with the corresponding% column in this vector. % % >> [alpha, b] = trainlssvm({X, [Y_1 ... Y_d],type,...% [gam_1 ... gam_d], ...% [sig2_1 ... sig2_d],...% {kernel_1,...,kernel_d}})% % Full syntax% % 1. Using the functional interface:% % >> [alpha, b] = trainlssvm({X,Y,type,gam,sig2})% >> [alpha, b] = trainlssvm({X,Y,type,gam,sig2,kernel})% >> [alpha, b] = trainlssvm({X,Y,type,gam,sig2,kernel,preprocess})% % Outputs % alpha : N x m matrix with support values of the LS-SVM% b : 1 x m vector with bias term(s) of the LS-SVM% Inputs % X : N x d matrix with the inputs of the training data% Y : N x 1 vector with the outputs of the training data% type : 'function estimation' ('f') or 'classifier' ('c')% gam : Regularization parameter% sig2 : Kernel parameter (bandwidth in the case of the 'RBF_kernel')% kernel(*) : Kernel type (by default 'RBF_kernel')% preprocess(*) : 'preprocess'(*) or 'original'% %% * Using the object oriented interface:% % >> model = trainlssvm(model)% >> model = trainlssvm({X,Y,type,gam,sig2})% >> model = trainlssvm({X,Y,type,gam,sig2,kernel})% >> model = trainlssvm({X,Y,type,gam,sig2,kernel,preprocess})% % Outputs % model : Trained object oriented representation of the LS-SVM model% Inputs % model : Object oriented representation of the LS-SVM model% X(*) : N x d matrix with the inputs of the training data% Y(*) : N x 1 vector with the outputs of the training data% type(*) : 'function estimation' ('f') or 'classifier' ('c')% gam(*) : Regularization parameter% sig2(*) : Kernel parameter (bandwidth in the case of the 'RBF_kernel')% kernel(*) : Kernel type (by default 'RBF_kernel')% preprocess(*) : 'preprocess'(*) or 'original'% % See also:% simlssvm, initlssvm, changelssvm, plotlssvm, prelssvm, codelssvm% Copyright (c) 2002, KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlab%% initialise the model 'model'%if (iscell(model)), model = initlssvm(model{:});end%% given X and Y?%%model = codelssvm(model);eval('model = changelssvm(model,''xtrain'',X);',';');eval('model = changelssvm(model,''ytrain'',Y);',';');eval('model = changelssvm(model,''selector'',1:size(X,1));',';');%% no training needed if status = 'trained'%if model.status(1) == 't', if (nargout>1), % [alpha,b] X = model.xtrain; Y = model.ytrain; b = model.b; model = model.alpha; end returnend %% control of the inputs%if ~((strcmp(model.kernel_type,'RBF_kernel') & length(model.kernel_pars)>=1) |... (strcmp(model.kernel_type,'lin_kernel') & length(model.kernel_pars)>=0) |... (strcmp(model.kernel_type,'MLP_kernel') & length(model.kernel_pars)>=2) |... (strcmp(model.kernel_type,'poly_kernel')& length(model.kernel_pars)>=1)), eval('feval(model.kernel_type,model.xtrain(1,:),model.xtrain(2,:),model.kernel_pars);model.implementation=''MATLAB'';',... 'error(''The kernel type is not valid or to few arguments'');');elseif (model.steps<=0), error('steps must be larger then 0');elseif (model.gam<=0), error('gamma must be larger then 0');% elseif (model.kernel_pars<=0),% error('sig2 must be larger then 0');elseif or(model.x_dim<=0, model.y_dim<=0), error('dimension of datapoints must be larger than 0');end%% coding if needed%if model.code(1) == 'c', % changed model = codelssvm(model);end%% preprocess%eval('if model.prestatus(1)==''c'', changed=1; else changed=0;end;','changed=0;');if model.preprocess(1) =='p' & changed, model = prelssvm(model);elseif model.preprocess(1) =='o' & changed model = postlssvm(model);end% clocktic;%% set & control input variables and dimensions% if (model.type(1) == 'f'), % function dyn_pars=[];elseif (model.type(1) == 'c'), % class dyn_pars=[]; end% only MATLABif size(model.gam,1)>1, model.implementation='MATLAB'; end%% output dimension > 1...recursive call on each dimension%if model.y_dim>1, if (length(model.kernel_pars)==model.y_dim | size(model.gam,2)==model.y_dim |prod(size(model.kernel_type,2))==model.y_dim) disp('multidimensional output...'); model = trainmultidimoutput(model); % % wich output is wanted? % if (nargout>1), X = model.xtrain; Y = model.ytrain; b = model.b; model = model.alpha; else model.duration = toc; model.status = 'trained'; end return endend%% call lssvmMATLAB.m, lssvm.mex* or lssvmFILE.m%if strcmpi(model.implementation,'CMEX'), model.cga_startvalues = []; eval('model.cga_startvalues;','model.cga_startvalues = [];'); eval(['[model.alpha, model.b,model.cga_startvalues] =' ... 'lssvm(model.xtrain(model.selector, 1:model.x_dim)'',model.x_dim,'... 'model.ytrain(model.selector, 1:model.y_dim),model.y_dim,'... 'model.nb_data, model.type, model.gam,' ... 'model.cga_eps, model.cga_fi_bound,model.cga_max_itr,' ... 'model.cga_startvalues,'... 'model.kernel_type, model.kernel_pars,' ... 'model.cga_show,dyn_pars);'],... 'model.implementation=''CFILE''; disp(''converting now to CFILE implementation'');');% if error in CMEX ...endif strcmpi(model.implementation,'CFILE'), eval('model.cga_startvalues;','model.cga_startvalues = [];'); eval('model = lssvmFILE(model,''buffer.mc'');',... ['model.implementation=''MATLAB'';'... 'disp(''make sure lssvmFILE.x (lssvmFILE.exe) is in the' ... ' current directory, change now to MATLAB implementation...'');']); % if error in CFILE ...endif strcmpi(model.implementation(1),'m'), model = lssvmMATLAB(model);end%% wich output is wanted?%if (nargout>1), X = model.xtrain; Y = model.ytrain; b = model.b; model = model.alpha;else model.duration = toc; model.status = 'trained';end %%function model = trainmultidimoutput(model)%% % model.alpha = zeros(model.nb_data, model.y_dim); model.b = zeros(1,model.y_dim); model.cga_startvalues = []; for d=1:model.y_dim, eval('gam = model.gam(:,d);','gam = model.gam(:);'); eval('sig2 = model.kernel_pars(:,d);','sig2 = model.kernel_pars(:);'); eval('kernel = model.kernel_type{d};','kernel=model.kernel_type;'); [model.alpha(:,d),model.b(d)] = trainlssvm({model.xtrain,model.ytrain(:,d),model.type,gam,sig2,kernel,'original'}); end % % wich output is wanted? % if (nargout>1), X = model.xtrain; Y = model.ytrain; b = model.b; model = model.alpha; else model.duration = toc; model.status = 'trained'; end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -