📄 prelssvm.m
字号:
function [model,Yt] = prelssvm(model,Xt,Yt)% Preprocessing of the LS-SVM%% These functions should only be called by trainlssvm or by% simlssvm. At first the preprocessing assigns a label to each in-% and output component (c for continuous, a for categorical or b% for binary variables). According to this label each dimension is rescaled:% % * continuous: zero mean and unit variance% * categorical: no preprocessing% * binary: labels -1 and +1% % Full syntax (only using the object oriented interface):% % >> model = prelssvm(model)% >> Xp = prelssvm(model, Xt)% >> [empty, Yp] = prelssvm(model, [], Yt)% >> [Xp, Yp] = prelssvm(model, Xt, Yt)% % Outputs % model : Preprocessed object oriented representation of the LS-SVM model% Xp : Nt x d matrix with the preprocessed inputs of the test data% Yp : Nt x d matrix with the preprocessed outputs of the test data% Inputs % model : Object oriented representation of the LS-SVM model% Xt : Nt x d matrix with the inputs of the test data to preprocess% Yt : Nt x d matrix with the outputs of the test data to preprocess% % % See also:% postlssvm, trainlssvm% Copyright (c) 2002, KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlabif model.preprocess(1)~='p', % no 'preprocessing if nargin>=2, model = Xt; end returnend% % what to do% if model.preprocess(1)=='p', eval('if model.prestatus(1)==''c'',model.prestatus=''unschemed'';end','model.prestatus=''unschemed'';');end if nargin==1, % only model rescaling % % if UNSCHEMED, redefine a rescaling % if model.prestatus(1)=='u',% 'unschemed' ffx =[]; for i=1:model.x_dim, eval('ffx = [ffx model.pre_xscheme(i)];',... 'ffx = [ffx signal_type(model.xtrain(:,i))];'); end model.pre_xscheme = ffx; ff = []; for i=1:model.y_dim, eval('ff = [ff model.pre_yscheme(i)];',... 'ff = [ff signal_type(model.ytrain(:,i))];'); end model.pre_yscheme = ff; model.prestatus='schemed'; end % % execute rescaling as defined if not yet CODED % if model.prestatus(1)=='s',% 'schemed' model=premodel(model); model.prestatus = 'ok'; end % % rescaling of the to simulate inputs %elseif model.preprocess(1)=='p' if model.prestatus(1)=='o',%'ok' eval('Yt;','Yt=[];'); [model,Yt] = premodel(model,Xt,Yt); else warning('model rescaling inconsistent..redo ''model=prelssvm(model);''..'); endendfunction [type,ss] = signal_type(signal)%% determine the type of the signal,% binary classifier ('b'), categorical classifier ('a'), or continuous% signal ('c')%%ss = sort(signal);dif = sum(ss(2:end)~=ss(1:end-1))+1;% binaryif dif==2, type = 'b';% categoricalelseif dif<sqrt(length(signal)), type='a';% continuelse type ='c';end %% effective rescaling%function [model,Yt] = premodel(model,Xt,Yt)%%%if nargin==1, for i=1:model.x_dim, % CONTINUOUS VARIABLE: if model.pre_xscheme(i)=='c', model.pre_xmean(i)=mean(model.xtrain(:,i)); model.pre_xstd(i) = std(model.xtrain(:,i)); model.xtrain(:,i) = pre_zmuv(model.xtrain(:,i),model.pre_xmean(i),model.pre_xstd(i)); % CATEGORICAL VARIBALE: elseif model.pre_xscheme(i)=='a', model.pre_xmean(i)= 0; model.pre_xstd(i) = 0; model.xtrain(:,i) = pre_cat(model.xtrain(:,i),model.pre_xmean(i),model.pre_xstd(i)); % BINARY VARIBALE: elseif model.pre_xscheme(i)=='b', model.pre_xmean(i) = min(model.xtrain(:,i)); model.pre_xstd(i) = max(model.xtrain(:,i)); model.xtrain(:,i) = pre_bin(model.xtrain(:,i),model.pre_xmean(i),model.pre_xstd(i)); end end for i=1:model.y_dim, % CONTINUOUS VARIABLE: if model.pre_yscheme(i)=='c', model.pre_ymean(i)=mean(model.ytrain(:,i),1); model.pre_ystd(i) = std(model.ytrain(:,i),1); model.ytrain(:,i) = pre_zmuv(model.ytrain(:,i),model.pre_ymean(i),model.pre_ystd(i)); % CATEGORICAL VARIBALE: elseif model.pre_yscheme(i)=='a', model.pre_ymean(i)=0; model.pre_ystd(i) =0; model.ytrain(:,i) = pre_cat(model.ytrain(:,i),model.pre_ymean(i),model.pre_ystd(i)); % BINARY VARIBALE: elseif model.pre_yscheme(i)=='b', model.pre_ymean(i) = min(model.ytrain(:,i)); model.pre_ystd(i) = max(model.ytrain(:,i)); model.ytrain(:,i) = pre_bin(model.ytrain(:,i),model.pre_ymean(i),model.pre_ystd(i)); end endelse %if nargin>1, % testdata Xt, if ~isempty(Xt), if size(Xt,2)~=model.x_dim, warning('dimensions of Xt not compatible with dimensions of support vectors...');end for i=1:model.x_dim, % CONTINUOUS VARIABLE: if model.pre_xscheme(i)=='c', Xt(:,i) = pre_zmuv(Xt(:,i),model.pre_xmean(i),model.pre_xstd(i)); % CATEGORICAL VARIBALE: elseif model.pre_xscheme(i)=='a', Xt(:,i) = pre_cat(Xt(:,i),model.pre_xmean(i),model.pre_xstd(i)); % BINARY VARIBALE: elseif model.pre_xscheme(i)=='b', Xt(:,i) = pre_bin(Xt(:,i),model.pre_xmean(i),model.pre_xstd(i)); end end end if nargin>2 & ~isempty(Yt), if size(Yt,2)~=model.y_dim, warning('dimensions of Yt not compatible with dimensions of training output...');end for i=1:model.y_dim, % CONTINUOUS VARIABLE: if model.pre_yscheme(i)=='c', Yt(:,i) = pre_zmuv(Yt(:,i),model.pre_ymean(i), model.pre_ystd(i)); % CATEGORICAL VARIBALE: elseif model.pre_yscheme(i)=='a', Yt(:,i) = pre_cat(Yt(:,i),model.pre_ymean(i),model.pre_ystd(i)); % BINARY VARIBALE: elseif model.pre_yscheme(i)=='b', Yt(:,i) = pre_bin(Yt(:,i),model.pre_ymean(i),model.pre_ystd(i)); end end end % assign output model=Xt;endfunction X = pre_zmuv(X,mean,var)%% preprocessing a continuous signal; rescaling to zero mean and unit% variance % 'c'%X = (X-mean)./var;function X = pre_cat(X,mean,range)%% preprocessing a categorical signal;% 'a'%X=X;function X = pre_bin(X,min,max)%% preprocessing a binary signal;% 'b'%n = (X==min);p = not(n);X=-1.*(n)+p;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -