📄 dd2magv.c
字号:
/***********************************************************************
* MEX TEMPLATE FOR DD2M-FILTER
* ----------------------------
* Make a copy of this file, give it a new name and do the following:
* o Write a function (in C) that contains the state equation.
* o In the same file write a function containing the (multiple)
* observation equations.
* o Specify the name of the file in the "define variable" KALMFILE.
* Remember to use " " around the name.
* o Assign XFUNC to the name of the state equation function and assign
* YFUNC to the name of the observation equation function (no " "!).
* o Compile with the appropriate Matlab command:
* >> mex my_dd2m.c kalmlblx.o % PC/Linux, gcc
* >> mex my_dd2m.c kalmlblcc.obj % Matlab lcc compiler
*
***********************************************************************/
#define KALMFILE "agvfctm.c"
#define XFUNC agvtu
#define YFUNC agvobs
/***********************************************************************/
/*
* INCLUDE HEADERS
*/
#include <stdio.h>
#include <math.h>
#include <time.h>
#include "mex.h"
/*
* DEFINES ASSOCIATED WITH MATRIX MANIPULATION
*/
#define ON 1
#define OFF 0
#define RUNCHK ON /* Run-time checks switched on/off. */
/* "Inline" functions. */
/* ( No run-time checks is performed, when inline functions are used ) */
#define nof_rows(ptm) (ptm->row) /* See getrows */
#define nof_cols(ptm) (ptm->col) /* See getcols */
#define vec_len(ptv) (ptv->row+ptv->col-1) /* See length */
#define get_val(ptm,row_pos,col_pos) (ptm->mat[row_pos][col_pos]) /* See mget */
#define put_val(ptm,row_pos,col_pos,value) ((ptm->mat[row_pos][col_pos])=value) /* See mput */
#define rvget(ptv,element) (ptv->mat[0][element]) /* See vget */
#define cvget(ptv,element) (ptv->mat[element][0]) /* See vget */
#define rvput(ptv,element,value) ((ptv->mat[0][element])=value) /* See vput */
#define cvput(ptv,element,value) ((ptv->mat[element][0])=value) /* See vput */
/* Declaration of the "abstract" data-type. */
typedef struct { /* Matrix structure for C library */
int row; /* These are meant to be "private" */
int col; /* and should only be accessed via */
double **mat; /* the "member functions" below. */
} matrix;
typedef struct { /* Matrix structure for C library */
int row; /* These are meant to be "private" */
int col; /* and should only be accessed via */
int **mat; /* the "member functions" below. */
} intmatrix;
typedef struct { /* Optional initializations */
matrix *init; /* Initialization parameters */
int Aflag; /* Linear state update (deterministic term) */
int Fflag; /* Linear state update (stochastic term) */
int Cflag; /* Linear output equation (deterministic term) */
int Gflag; /* Linear output equation (stochastic term) */
matrix *A; /* State transition matrix */
matrix *C; /* Output sensitivity matrix */
matrix *F; /* Process noise coupling matrix */
matrix *G; /* Observ. noise coupling matrix */
} optpar;
typedef struct { /* Observation data structure */
int ny; /* Dimension of observation vector */
int nobs; /* Number of observations in stream */
int nw; /* Dimension of obs. noise vector */
matrix *y; /* Mean of process noise */
intmatrix *tidx; /* Time stamps for obs. in .y */
matrix *wmean; /* Mean of measurement noise */
matrix *Sw; /* Root of noise covariance matrix */
matrix *y0; /* Storage of current outp. estimate*/
matrix *y02; /* Storage of 2 * output estimate */
matrix *ybar; /* Storage of scaled output estimate*/
matrix *Sy; /* Root of outp. covariance matrix */
matrix *Sy0; /* Rectangular root of outp. cov mat*/
matrix *Sytmp; /* Storage of intermediate results */
matrix *Syx; /* Root of cross-covariance matrix */
matrix *Syw; /* Root of cross-covariance matrix */
matrix *Syx2; /* Root of cross-covariance matrix */
matrix *Syw2; /* Root of cross-covariance matrix */
matrix *K; /* Kalman gain */
matrix *Sxlong; /* Long root of covariance matrix */
matrix *hSwt; /* Sw multiplied by h and transposed*/
int yidx; /* Index to next observation */
int lasttime; /* Sample no. for last observation */
matrix *wtmp; /* temp vector */
matrix *wtmp2; /* temp vector */
matrix *syp; /* temp vector */
matrix *sym; /* temp vector */
int Cflag; /* Linear output equation (deterministic term) */
int Gflag; /* Linear output equation (stochastic term) */
matrix *C; /* Output sensitivity matrix */
matrix *G; /* Observ. noise sensitivity matrix */
int syx2_start; /* Start index of Syx2 in Sy */
int syw2_start; /* Start index of Syw2 in Sy */
double scal3; /* Constant used in dd2mfilt */
} obsstruct;
/* Declaration of the "member functions". */
matrix *mmake( int, int );
void mfree( matrix* );
void mprint( matrix* );
void merror( char* );
int getrows( matrix* );
int getcols( matrix* );
void minit( matrix* );
void madd( matrix*, matrix*, matrix* );
void mset( matrix*, matrix*);
intmatrix *intmmake( int, int );
void intmfree( intmatrix* );
/*
* PROTOTYPE DECLARATION
*/
matrix* mat2sm(const mxArray*);
void sm2mat(mxArray*, matrix*);
intmatrix* mat2intsm(const mxArray*);
void intsm2mat(mxArray*, intmatrix*);
int dd2filtm(int (*xfct)(matrix*, matrix*, matrix*, matrix*, int),
int (*yfct)(matrix*, matrix*, matrix*, int),
matrix*, matrix*, matrix*, matrix*, matrix*, matrix*,
obsstruct*, int, optpar*);
#include KALMFILE
/*********************************************************************************
* *
* dd2mc gateway routine *
* --------------------- *
* *
* This is a C-version of the Matlab function 'dd2m'. *
* Type 'help dd2m' from Matlab for information on *
* how to call the function. *
* *
* *
* Written by Magnus Norgaard *
* LastEditDate: Nov. 11, 2001 *
* *
*********************************************************************************/
/*********************************************************************************
* *
* G A T E W A Y R O U T I N E *
* *
*********************************************************************************/
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
/*
>>>>>>>>>>>>>>>>>> VARIABLE DECLARATIONS <<<<<<<<<<<<<<<<<<<
*/
matrix *xhat_data, *Smat, *xbar, *Sxbar, *Sv, *u;
optpar *opt;
int a, samples=0, nx, ny=0, *ptmi, streams, i;
mxArray *Matmatrix, *M;
obsstruct *obs;
/*
>>>>>>>>>>>>>>>> CHECK FOR PROPER NUMBER OF ARGUMENTS <<<<<<<<<<<<<<<
*/
if (nrhs<7 || nrhs>8)
mexErrMsgTxt("Wrong number of input arguments");
else if (nlhs > 2)
mexErrMsgTxt("Too many output arguments");
/*
>>>>>>>>>>>>>>>>> CONVERT INPUT ARGUMENTS TO SM FORMAT <<<<<<<<<<<<<<<<
*/
/* Convert Sxbar */
a = 1;
nx = mxGetN(prhs[a]);
if (nx==0 || nx!=mxGetM(prhs[a]))
mexErrMsgTxt("Dimension mismatch in P0");
else
Sxbar = mat2sm(prhs[a]);
/* Convert xbar and initialize if necessary */
a = 0;
if (mxGetN(prhs[a])==0 || mxGetM(prhs[a])==0){
xbar = mmake(nx,1);
minit(xbar);
}
else
xbar = mat2sm(prhs[a]);
/* Convert Sv */
a = 2;
if (mxGetN(prhs[a])!=mxGetM(prhs[a]))
mexErrMsgTxt("Dimension mismatch in Q");
else
Sv = mat2sm(prhs[a]);
/* Convert y */
a = 5;
if(!mxIsCell(prhs[a]))
mexErrMsgTxt("Argument 'y' must be a cell array");
if(mxGetM(prhs[a])!=1 || mxGetM(prhs[a])>mxGetN(prhs[a]))
mexErrMsgTxt("Argument 'y' must be a 'row' vector of cells");
streams = mxGetN(prhs[a]); /* Observation streams */
/* Allocate memory for array of 'obs' structures */
obs = (obsstruct*) malloc(streams*sizeof(obsstruct));
/* Extract each 'y' matrix from cell array */
for(i=0;i<streams;i++){
M = mxGetCell(prhs[a],i);
obs[i].ny = mxGetN(M);
obs[i].nobs = mxGetM(M);
if (obs[i].ny==0 || obs[i].nobs==0)
mexErrMsgTxt("Observation matrix is empty");
obs[i].y = mat2sm(M);
ny += obs[i].ny;
}
/* Convert timeidx */
a = 6;
if(!mxIsCell(prhs[a]))
mexErrMsgTxt("Argument 'timeidx' must be a cell array");
if(mxGetM(prhs[a])!=1 || mxGetN(prhs[a])!=streams)
mexErrMsgTxt("'timeidx' must have the same dimension as 'y'");
/* Extract each 'timeidx' matrix from cell array */
for(i=0;i<streams;i++){
M = mxGetCell(prhs[a],i);
if (mxGetN(M)==0 || mxGetM(M)==0)
mexErrMsgTxt("No time stamps - 'timeidx' is empty");
if (mxGetM(M)!=obs[i].nobs)
mexErrMsgTxt("Dimension mismatch between dimension of cells in 'y' and 'timeidx'");
obs[i].tidx = mat2intsm(M);
if(samples<cvget(obs[i].tidx,obs[i].nobs-1))
samples=cvget(obs[i].tidx,obs[i].nobs-1);
}
/* Convert Sw */
a = 3;
if(!mxIsCell(prhs[a]))
mexErrMsgTxt("Argument 'Sw' must be a cell array");
if(mxGetM(prhs[a])!=1 || mxGetN(prhs[a])!=streams)
mexErrMsgTxt("'Sw' must have the same dimension as 'y'");
/* Extract each 'Sw' matrix from cell array */
for(i=0;i<streams;i++){
M = mxGetCell(prhs[a],i);
if (mxGetN(M)!=mxGetM(M))
mexErrMsgTxt("Cell in 'Sw' not quadratic");
obs[i].Sw = mat2sm(M);
obs[i].nw = mxGetN(M);
}
/* Convert u */
a = 4;
if (mxGetN(prhs[a])==0 || mxGetM(prhs[a])==0){
u = mmake(1,1);
u->row = 0;
}
else{
u = mat2sm(prhs[a]);
samples = mxGetM(prhs[a]);
}
/* Convert optpar */
opt = (optpar*) malloc(sizeof(optpar)); /* Allocate mem for par structure */
opt->Aflag=0; opt->Fflag=0;
if (nrhs==8){
a = 7;
Matmatrix = mxGetField(prhs[a], 0, "init");
if(Matmatrix==NULL){
opt->init = mmake(1,1);
minit(opt->init);
}
else
opt->init = mat2sm(Matmatrix);
/* Explore if linear terms are present */
/* Relationship between new and past states linear */
Matmatrix = mxGetField(prhs[a], 0, "A");
if(Matmatrix!=NULL){
if(mxGetM(Matmatrix)!=nx || mxGetN(Matmatrix)!=nx)
mexErrMsgTxt("optpar.A has the wrong dimension");
opt->A = mat2sm(Matmatrix);
opt->Aflag = 1;
}
/* Relationship between states and process noise is linear */
Matmatrix = mxGetField(prhs[a], 0, "F");
if(Matmatrix!=NULL){
if(mxGetM(Matmatrix)!=nx || mxGetN(Matmatrix)!=getrows(Sv))
mexErrMsgTxt("optpar.F has the wrong dimension");
opt->F = mat2sm(Matmatrix);
opt->Fflag = 1;
}
/* Initialize C matrices if present */
Matmatrix = mxGetField(prhs[a], 0, "C");
for(i=0;i<streams;i++) /* By default, initialize Cflags=0 */
obs[i].Cflag = 0;
if(Matmatrix!=NULL){
if(!mxIsCell(Matmatrix))
mexErrMsgTxt("Argument 'opt.C' must be a cell array");
for(i=0;i<streams;i++){
M = mxGetCell(Matmatrix,i);
if(mxGetM(M)!=0 && mxGetN(M)!=0){
if((mxGetM(M)!=obs[i].ny) || (mxGetN(M)!=nx))
mexErrMsgTxt("Wrong dimension of a matrix in 'opt.C'");
else{
obs[i].C = mat2sm(M);
obs[i].Cflag = 1;
}
}
}
}
/* Initialize G matrices if present */
Matmatrix = mxGetField(prhs[a], 0, "G");
for(i=0;i<streams;i++) /* By default, initialize Gflags=0 */
obs[i].Gflag = 0;
if(Matmatrix!=NULL){
if(!mxIsCell(Matmatrix))
mexErrMsgTxt("Argument 'opt.G' must be a cell array");
for(i=0;i<streams;i++){
M = mxGetCell(Matmatrix,i);
if(mxGetM(M)!=0 && mxGetN(M)!=0){
if((mxGetM(M)!=obs[i].ny) || (mxGetN(M)!=obs[i].nw))
mexErrMsgTxt("Wrong dimension of a matrix in 'opt.G'");
else{
obs[i].G = mat2sm(M);
obs[i].Gflag = 1;
}
}
}
}
}
else{
opt->init = mmake(1,1);
minit(opt->init);
for(i=0;i<streams;i++) /* By default, initialize Cflags=0 */
obs[i].Cflag = 0;
for(i=0;i<streams;i++) /* By default, initialize Gflags=0 */
obs[i].Gflag = 0;
}
/* Allocate memory for output matrices */
xhat_data = mmake(samples+1,nx);
Smat = mmake(samples+1,floor(0.5*(nx*(nx+1))+0.5));
/*
>>>>>>>>>>>>>>>>>>>>>> CALL THE C-ROUTINE <<<<<<<<<<<<<<<<<<<<<
*/
dd2filtm(XFUNC,YFUNC, xhat_data, Smat, xbar, Sxbar, Sv, u, obs, streams,opt);
/*
>>>>>>>>>>>>>>>>>>> CREATE OUTPUT MATICES <<<<<<<<<<<<<<<<<<
*/
if(nlhs>0){
plhs[0] = mxCreateDoubleMatrix(getrows(xhat_data),nx,mxREAL);
sm2mat(plhs[0],xhat_data);
}
if(nlhs>1){
plhs[1] = mxCreateDoubleMatrix(getrows(Smat),getcols(Smat),mxREAL);
sm2mat(plhs[1],Smat);
}
/*
>>>>>>>>>>>>>>>>>>>> FREE ARGUMENT MATRICES <<<<<<<<<<<<<<<<<<<<<
*/
mfree(xbar); mfree(Sxbar); mfree(Sv); mfree(u);
if(opt->Aflag) mfree(opt->A);
if(opt->Fflag) mfree(opt->F);
mfree(opt->init); free(opt); free(obs);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -