📄 primnodes.h
字号:
* than vice versa.) It is important not to assume that length(args) is * the same as the number of columns logically present in the rowtype. */typedef struct RowExpr{ Expr xpr; List *args; /* the fields */ Oid row_typeid; /* RECORDOID or a composite type's ID */ /* * Note: we deliberately do NOT store a typmod. Although a typmod will be * associated with specific RECORD types at runtime, it will differ for * different backends, and so cannot safely be stored in stored * parsetrees. We must assume typmod -1 for a RowExpr node. */ CoercionForm row_format; /* how to display this node */} RowExpr;/* * CoalesceExpr - a COALESCE expression */typedef struct CoalesceExpr{ Expr xpr; Oid coalescetype; /* type of expression result */ List *args; /* the arguments */} CoalesceExpr;/* * MinMaxExpr - a GREATEST or LEAST function */typedef enum MinMaxOp{ IS_GREATEST, IS_LEAST} MinMaxOp;typedef struct MinMaxExpr{ Expr xpr; Oid minmaxtype; /* common type of arguments and result */ MinMaxOp op; /* function to execute */ List *args; /* the arguments */} MinMaxExpr;/* * NullIfExpr - a NULLIF expression * * Like DistinctExpr, this is represented the same as an OpExpr referencing * the "=" operator for x and y. */typedef OpExpr NullIfExpr;/* ---------------- * NullTest * * NullTest represents the operation of testing a value for NULLness. * Currently, we only support scalar input values, but eventually a * row-constructor input should be supported. * The appropriate test is performed and returned as a boolean Datum. * ---------------- */typedef enum NullTestType{ IS_NULL, IS_NOT_NULL} NullTestType;typedef struct NullTest{ Expr xpr; Expr *arg; /* input expression */ NullTestType nulltesttype; /* IS NULL, IS NOT NULL */} NullTest;/* * BooleanTest * * BooleanTest represents the operation of determining whether a boolean * is TRUE, FALSE, or UNKNOWN (ie, NULL). All six meaningful combinations * are supported. Note that a NULL input does *not* cause a NULL result. * The appropriate test is performed and returned as a boolean Datum. */typedef enum BoolTestType{ IS_TRUE, IS_NOT_TRUE, IS_FALSE, IS_NOT_FALSE, IS_UNKNOWN, IS_NOT_UNKNOWN} BoolTestType;typedef struct BooleanTest{ Expr xpr; Expr *arg; /* input expression */ BoolTestType booltesttype; /* test type */} BooleanTest;/* * CoerceToDomain * * CoerceToDomain represents the operation of coercing a value to a domain * type. At runtime (and not before) the precise set of constraints to be * checked will be determined. If the value passes, it is returned as the * result; if not, an error is raised. Note that this is equivalent to * RelabelType in the scenario where no constraints are applied. */typedef struct CoerceToDomain{ Expr xpr; Expr *arg; /* input expression */ Oid resulttype; /* domain type ID (result type) */ int32 resulttypmod; /* output typmod (currently always -1) */ CoercionForm coercionformat; /* how to display this node */} CoerceToDomain;/* * Placeholder node for the value to be processed by a domain's check * constraint. This is effectively like a Param, but can be implemented more * simply since we need only one replacement value at a time. * * Note: the typeId/typeMod will be set from the domain's base type, not * the domain itself. This is because we shouldn't consider the value to * be a member of the domain if we haven't yet checked its constraints. */typedef struct CoerceToDomainValue{ Expr xpr; Oid typeId; /* type for substituted value */ int32 typeMod; /* typemod for substituted value */} CoerceToDomainValue;/* * Placeholder node for a DEFAULT marker in an INSERT or UPDATE command. * * This is not an executable expression: it must be replaced by the actual * column default expression during rewriting. But it is convenient to * treat it as an expression node during parsing and rewriting. */typedef struct SetToDefault{ Expr xpr; Oid typeId; /* type for substituted value */ int32 typeMod; /* typemod for substituted value */} SetToDefault;/*-------------------- * TargetEntry - * a target entry (used in query target lists) * * Strictly speaking, a TargetEntry isn't an expression node (since it can't * be evaluated by ExecEvalExpr). But we treat it as one anyway, since in * very many places it's convenient to process a whole query targetlist as a * single expression tree. * * In a SELECT's targetlist, resno should always be equal to the item's * ordinal position (counting from 1). However, in an INSERT or UPDATE * targetlist, resno represents the attribute number of the destination * column for the item; so there may be missing or out-of-order resnos. * It is even legal to have duplicated resnos; consider * UPDATE table SET arraycol[1] = ..., arraycol[2] = ..., ... * The two meanings come together in the executor, because the planner * transforms INSERT/UPDATE tlists into a normalized form with exactly * one entry for each column of the destination table. Before that's * happened, however, it is risky to assume that resno == position. * Generally get_tle_by_resno() should be used rather than list_nth() * to fetch tlist entries by resno, and only in SELECT should you assume * that resno is a unique identifier. * * resname is required to represent the correct column name in non-resjunk * entries of top-level SELECT targetlists, since it will be used as the * column title sent to the frontend. In most other contexts it is only * a debugging aid, and may be wrong or even NULL. (In particular, it may * be wrong in a tlist from a stored rule, if the referenced column has been * renamed by ALTER TABLE since the rule was made. Also, the planner tends * to store NULL rather than look up a valid name for tlist entries in * non-toplevel plan nodes.) In resjunk entries, resname should be either * a specific system-generated name (such as "ctid") or NULL; anything else * risks confusing ExecGetJunkAttribute! * * ressortgroupref is used in the representation of ORDER BY and * GROUP BY items. Targetlist entries with ressortgroupref=0 are not * sort/group items. If ressortgroupref>0, then this item is an ORDER BY or * GROUP BY value. No two entries in a targetlist may have the same nonzero * ressortgroupref --- but there is no particular meaning to the nonzero * values, except as tags. (For example, one must not assume that lower * ressortgroupref means a more significant sort key.) The order of the * associated SortClause or GroupClause lists determine the semantics. * * resorigtbl/resorigcol identify the source of the column, if it is a * simple reference to a column of a base table (or view). If it is not * a simple reference, these fields are zeroes. * * If resjunk is true then the column is a working column (such as a sort key) * that should be removed from the final output of the query. Resjunk columns * must have resnos that cannot duplicate any regular column's resno. Also * note that there are places that assume resjunk columns come after non-junk * columns. *-------------------- */typedef struct TargetEntry{ Expr xpr; Expr *expr; /* expression to evaluate */ AttrNumber resno; /* attribute number (see notes above) */ char *resname; /* name of the column (could be NULL) */ Index ressortgroupref;/* nonzero if referenced by a sort/group * clause */ Oid resorigtbl; /* OID of column's source table */ AttrNumber resorigcol; /* column's number in source table */ bool resjunk; /* set to true to eliminate the attribute from * final target list */} TargetEntry;/* ---------------------------------------------------------------- * node types for join trees * * The leaves of a join tree structure are RangeTblRef nodes. Above * these, JoinExpr nodes can appear to denote a specific kind of join * or qualified join. Also, FromExpr nodes can appear to denote an * ordinary cross-product join ("FROM foo, bar, baz WHERE ..."). * FromExpr is like a JoinExpr of jointype JOIN_INNER, except that it * may have any number of child nodes, not just two. Also, there is an * implementation-defined difference: the planner is allowed to join the * children of a FromExpr using whatever join order seems good to it. * At present, JoinExpr nodes are always joined in exactly the order * implied by the jointree structure (except the planner may choose to * swap inner and outer members of a join pair). * * NOTE: the top level of a Query's jointree is always a FromExpr. * Even if the jointree contains no rels, there will be a FromExpr. * * NOTE: the qualification expressions present in JoinExpr nodes are * *in addition to* the query's main WHERE clause, which appears as the * qual of the top-level FromExpr. The reason for associating quals with * specific nodes in the jointree is that the position of a qual is critical * when outer joins are present. (If we enforce a qual too soon or too late, * that may cause the outer join to produce the wrong set of NULL-extended * rows.) If all joins are inner joins then all the qual positions are * semantically interchangeable. * * NOTE: in the raw output of gram.y, a join tree contains RangeVar, * RangeSubselect, and RangeFunction nodes, which are all replaced by * RangeTblRef nodes during the parse analysis phase. Also, the top-level * FromExpr is added during parse analysis; the grammar regards FROM and * WHERE as separate. * ---------------------------------------------------------------- *//* * RangeTblRef - reference to an entry in the query's rangetable * * We could use direct pointers to the RT entries and skip having these * nodes, but multiple pointers to the same node in a querytree cause * lots of headaches, so it seems better to store an index into the RT. */typedef struct RangeTblRef{ NodeTag type; int rtindex;} RangeTblRef;/*---------- * JoinExpr - for SQL JOIN expressions * * isNatural, using, and quals are interdependent. The user can write only * one of NATURAL, USING(), or ON() (this is enforced by the grammar). * If he writes NATURAL then parse analysis generates the equivalent USING() * list, and from that fills in "quals" with the right equality comparisons. * If he writes USING() then "quals" is filled with equality comparisons. * If he writes ON() then only "quals" is set. Note that NATURAL/USING * are not equivalent to ON() since they also affect the output column list. * * alias is an Alias node representing the AS alias-clause attached to the * join expression, or NULL if no clause. NB: presence or absence of the * alias has a critical impact on semantics, because a join with an alias * restricts visibility of the tables/columns inside it. * * During parse analysis, an RTE is created for the Join, and its index * is filled into rtindex. This RTE is present mainly so that Vars can * be created that refer to the outputs of the join. *---------- */typedef struct JoinExpr{ NodeTag type; JoinType jointype; /* type of join */ bool isNatural; /* Natural join? Will need to shape table */ Node *larg; /* left subtree */ Node *rarg; /* right subtree */ List *using; /* USING clause, if any (list of String) */ Node *quals; /* qualifiers on join, if any */ Alias *alias; /* user-written alias clause, if any */ int rtindex; /* RT index assigned for join */} JoinExpr;/*---------- * FromExpr - represents a FROM ... WHERE ... construct * * This is both more flexible than a JoinExpr (it can have any number of * children, including zero) and less so --- we don't need to deal with * aliases and so on. The output column set is implicitly just the union * of the outputs of the children. *---------- */typedef struct FromExpr{ NodeTag type; List *fromlist; /* List of join subtrees */ Node *quals; /* qualifiers on join, if any */} FromExpr;#endif /* PRIMNODES_H */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -