📄 hashjoin.h
字号:
/*------------------------------------------------------------------------- * * hashjoin.h * internal structures for hash joins * * * Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * $PostgreSQL: pgsql/src/include/executor/hashjoin.h,v 1.37 2005/10/15 02:49:44 momjian Exp $ * *------------------------------------------------------------------------- */#ifndef HASHJOIN_H#define HASHJOIN_H#include "access/htup.h"#include "storage/buffile.h"/* ---------------------------------------------------------------- * hash-join hash table structures * * Each active hashjoin has a HashJoinTable control block, which is * palloc'd in the executor's per-query context. All other storage needed * for the hashjoin is kept in private memory contexts, two for each hashjoin. * This makes it easy and fast to release the storage when we don't need it * anymore. (Exception: data associated with the temp files lives in the * per-query context too, since we always call buffile.c in that context.) * * The hashtable contexts are made children of the per-query context, ensuring * that they will be discarded at end of statement even if the join is * aborted early by an error. (Likewise, any temporary files we make will * be cleaned up by the virtual file manager in event of an error.) * * Storage that should live through the entire join is allocated from the * "hashCxt", while storage that is only wanted for the current batch is * allocated in the "batchCxt". By resetting the batchCxt at the end of * each batch, we free all the per-batch storage reliably and without tedium. * * During first scan of inner relation, we get its tuples from executor. * If nbatch > 1 then tuples that don't belong in first batch get saved * into inner-batch temp files. The same statements apply for the * first scan of the outer relation, except we write tuples to outer-batch * temp files. After finishing the first scan, we do the following for * each remaining batch: * 1. Read tuples from inner batch file, load into hash buckets. * 2. Read tuples from outer batch file, match to hash buckets and output. * * It is possible to increase nbatch on the fly if the in-memory hash table * gets too big. The hash-value-to-batch computation is arranged so that this * can only cause a tuple to go into a later batch than previously thought, * never into an earlier batch. When we increase nbatch, we rescan the hash * table and dump out any tuples that are now of a later batch to the correct * inner batch file. Subsequently, while reading either inner or outer batch * files, we might find tuples that no longer belong to the current batch; * if so, we just dump them out to the correct batch file. * ---------------------------------------------------------------- *//* these are in nodes/execnodes.h: *//* typedef struct HashJoinTupleData *HashJoinTuple; *//* typedef struct HashJoinTableData *HashJoinTable; */typedef struct HashJoinTupleData{ struct HashJoinTupleData *next; /* link to next tuple in same bucket */ uint32 hashvalue; /* tuple's hash code */ HeapTupleData htup; /* tuple header */} HashJoinTupleData;typedef struct HashJoinTableData{ int nbuckets; /* # buckets in the in-memory hash table */ /* buckets[i] is head of list of tuples in i'th in-memory bucket */ struct HashJoinTupleData **buckets; /* buckets array is per-batch storage, as are all the tuples */ int nbatch; /* number of batches */ int curbatch; /* current batch #; 0 during 1st pass */ int nbatch_original; /* nbatch when we started inner scan */ int nbatch_outstart; /* nbatch when we started outer scan */ bool growEnabled; /* flag to shut off nbatch increases */ double totalTuples; /* # tuples obtained from inner plan */ /* * These arrays are allocated for the life of the hash join, but only if * nbatch > 1. A file is opened only when we first write a tuple into it * (otherwise its pointer remains NULL). Note that the zero'th array * elements never get used, since we will process rather than dump out any * tuples of batch zero. */ BufFile **innerBatchFile; /* buffered virtual temp file per batch */ BufFile **outerBatchFile; /* buffered virtual temp file per batch */ /* * Info about the datatype-specific hash functions for the datatypes being * hashed. We assume that the inner and outer sides of each hashclause * are the same type, or at least share the same hash function. This is an * array of the same length as the number of hash keys. */ FmgrInfo *hashfunctions; /* lookup data for hash functions */ Size spaceUsed; /* memory space currently used by tuples */ Size spaceAllowed; /* upper limit for space used */ MemoryContext hashCxt; /* context for whole-hash-join storage */ MemoryContext batchCxt; /* context for this-batch-only storage */} HashJoinTableData;#endif /* HASHJOIN_H */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -