📄 numeric.c
字号:
Datumnumeric_int4(PG_FUNCTION_ARGS){ Numeric num = PG_GETARG_NUMERIC(0); NumericVar x; int32 result; /* XXX would it be better to return NULL? */ if (NUMERIC_IS_NAN(num)) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("cannot convert NaN to integer"))); /* Convert to variable format, then convert to int4 */ init_var(&x); set_var_from_num(num, &x); result = numericvar_to_int4(&x); free_var(&x); PG_RETURN_INT32(result);}/* * Given a NumericVar, convert it to an int32. If the NumericVar * exceeds the range of an int32, raise the appropriate error via * ereport(). The input NumericVar is *not* free'd. */static int32numericvar_to_int4(NumericVar *var){ int32 result; int64 val; if (!numericvar_to_int8(var, &val)) ereport(ERROR, (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), errmsg("integer out of range"))); /* Down-convert to int4 */ result = (int32) val; /* Test for overflow by reverse-conversion. */ if ((int64) result != val) ereport(ERROR, (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), errmsg("integer out of range"))); return result;}Datumint8_numeric(PG_FUNCTION_ARGS){ int64 val = PG_GETARG_INT64(0); Numeric res; NumericVar result; init_var(&result); int8_to_numericvar(val, &result); res = make_result(&result); free_var(&result); PG_RETURN_NUMERIC(res);}Datumnumeric_int8(PG_FUNCTION_ARGS){ Numeric num = PG_GETARG_NUMERIC(0); NumericVar x; int64 result; /* XXX would it be better to return NULL? */ if (NUMERIC_IS_NAN(num)) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("cannot convert NaN to bigint"))); /* Convert to variable format and thence to int8 */ init_var(&x); set_var_from_num(num, &x); if (!numericvar_to_int8(&x, &result)) ereport(ERROR, (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), errmsg("bigint out of range"))); free_var(&x); PG_RETURN_INT64(result);}Datumint2_numeric(PG_FUNCTION_ARGS){ int16 val = PG_GETARG_INT16(0); Numeric res; NumericVar result; init_var(&result); int8_to_numericvar((int64) val, &result); res = make_result(&result); free_var(&result); PG_RETURN_NUMERIC(res);}Datumnumeric_int2(PG_FUNCTION_ARGS){ Numeric num = PG_GETARG_NUMERIC(0); NumericVar x; int64 val; int16 result; /* XXX would it be better to return NULL? */ if (NUMERIC_IS_NAN(num)) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("cannot convert NaN to smallint"))); /* Convert to variable format and thence to int8 */ init_var(&x); set_var_from_num(num, &x); if (!numericvar_to_int8(&x, &val)) ereport(ERROR, (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), errmsg("smallint out of range"))); free_var(&x); /* Down-convert to int2 */ result = (int16) val; /* Test for overflow by reverse-conversion. */ if ((int64) result != val) ereport(ERROR, (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), errmsg("smallint out of range"))); PG_RETURN_INT16(result);}Datumfloat8_numeric(PG_FUNCTION_ARGS){ float8 val = PG_GETARG_FLOAT8(0); Numeric res; NumericVar result; char buf[DBL_DIG + 100]; if (isnan(val)) PG_RETURN_NUMERIC(make_result(&const_nan)); sprintf(buf, "%.*g", DBL_DIG, val); init_var(&result); set_var_from_str(buf, &result); res = make_result(&result); free_var(&result); PG_RETURN_NUMERIC(res);}Datumnumeric_float8(PG_FUNCTION_ARGS){ Numeric num = PG_GETARG_NUMERIC(0); char *tmp; Datum result; if (NUMERIC_IS_NAN(num)) PG_RETURN_FLOAT8(get_float8_nan()); tmp = DatumGetCString(DirectFunctionCall1(numeric_out, NumericGetDatum(num))); result = DirectFunctionCall1(float8in, CStringGetDatum(tmp)); pfree(tmp); PG_RETURN_DATUM(result);}/* Convert numeric to float8; if out of range, return +/- HUGE_VAL */Datumnumeric_float8_no_overflow(PG_FUNCTION_ARGS){ Numeric num = PG_GETARG_NUMERIC(0); double val; if (NUMERIC_IS_NAN(num)) PG_RETURN_FLOAT8(get_float8_nan()); val = numeric_to_double_no_overflow(num); PG_RETURN_FLOAT8(val);}Datumfloat4_numeric(PG_FUNCTION_ARGS){ float4 val = PG_GETARG_FLOAT4(0); Numeric res; NumericVar result; char buf[FLT_DIG + 100]; if (isnan(val)) PG_RETURN_NUMERIC(make_result(&const_nan)); sprintf(buf, "%.*g", FLT_DIG, val); init_var(&result); set_var_from_str(buf, &result); res = make_result(&result); free_var(&result); PG_RETURN_NUMERIC(res);}Datumnumeric_float4(PG_FUNCTION_ARGS){ Numeric num = PG_GETARG_NUMERIC(0); char *tmp; Datum result; if (NUMERIC_IS_NAN(num)) PG_RETURN_FLOAT4(get_float4_nan()); tmp = DatumGetCString(DirectFunctionCall1(numeric_out, NumericGetDatum(num))); result = DirectFunctionCall1(float4in, CStringGetDatum(tmp)); pfree(tmp); PG_RETURN_DATUM(result);}Datumtext_numeric(PG_FUNCTION_ARGS){ text *str = PG_GETARG_TEXT_P(0); int len; char *s; Datum result; len = (VARSIZE(str) - VARHDRSZ); s = palloc(len + 1); memcpy(s, VARDATA(str), len); *(s + len) = '\0'; result = DirectFunctionCall3(numeric_in, CStringGetDatum(s), ObjectIdGetDatum(0), Int32GetDatum(-1)); pfree(s); return result;}Datumnumeric_text(PG_FUNCTION_ARGS){ /* val is numeric, but easier to leave it as Datum */ Datum val = PG_GETARG_DATUM(0); char *s; int len; text *result; s = DatumGetCString(DirectFunctionCall1(numeric_out, val)); len = strlen(s); result = (text *) palloc(VARHDRSZ + len); VARATT_SIZEP(result) = len + VARHDRSZ; memcpy(VARDATA(result), s, len); pfree(s); PG_RETURN_TEXT_P(result);}/* ---------------------------------------------------------------------- * * Aggregate functions * * The transition datatype for all these aggregates is a 3-element array * of Numeric, holding the values N, sum(X), sum(X*X) in that order. * * We represent N as a numeric mainly to avoid having to build a special * datatype; it's unlikely it'd overflow an int4, but ... * * ---------------------------------------------------------------------- */static ArrayType *do_numeric_accum(ArrayType *transarray, Numeric newval){ Datum *transdatums; int ndatums; Datum N, sumX, sumX2; ArrayType *result; /* We assume the input is array of numeric */ deconstruct_array(transarray, NUMERICOID, -1, false, 'i', &transdatums, &ndatums); if (ndatums != 3) elog(ERROR, "expected 3-element numeric array"); N = transdatums[0]; sumX = transdatums[1]; sumX2 = transdatums[2]; N = DirectFunctionCall1(numeric_inc, N); sumX = DirectFunctionCall2(numeric_add, sumX, NumericGetDatum(newval)); sumX2 = DirectFunctionCall2(numeric_add, sumX2, DirectFunctionCall2(numeric_mul, NumericGetDatum(newval), NumericGetDatum(newval))); transdatums[0] = N; transdatums[1] = sumX; transdatums[2] = sumX2; result = construct_array(transdatums, 3, NUMERICOID, -1, false, 'i'); return result;}Datumnumeric_accum(PG_FUNCTION_ARGS){ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); Numeric newval = PG_GETARG_NUMERIC(1); PG_RETURN_ARRAYTYPE_P(do_numeric_accum(transarray, newval));}/* * Integer data types all use Numeric accumulators to share code and * avoid risk of overflow. For int2 and int4 inputs, Numeric accumulation * is overkill for the N and sum(X) values, but definitely not overkill * for the sum(X*X) value. Hence, we use int2_accum and int4_accum only * for stddev/variance --- there are faster special-purpose accumulator * routines for SUM and AVG of these datatypes. */Datumint2_accum(PG_FUNCTION_ARGS){ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); Datum newval2 = PG_GETARG_DATUM(1); Numeric newval; newval = DatumGetNumeric(DirectFunctionCall1(int2_numeric, newval2)); PG_RETURN_ARRAYTYPE_P(do_numeric_accum(transarray, newval));}Datumint4_accum(PG_FUNCTION_ARGS){ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); Datum newval4 = PG_GETARG_DATUM(1); Numeric newval; newval = DatumGetNumeric(DirectFunctionCall1(int4_numeric, newval4)); PG_RETURN_ARRAYTYPE_P(do_numeric_accum(transarray, newval));}Datumint8_accum(PG_FUNCTION_ARGS){ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); Datum newval8 = PG_GETARG_DATUM(1); Numeric newval; newval = DatumGetNumeric(DirectFunctionCall1(int8_numeric, newval8)); PG_RETURN_ARRAYTYPE_P(do_numeric_accum(transarray, newval));}Datumnumeric_avg(PG_FUNCTION_ARGS){ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); Datum *transdatums; int ndatums; Numeric N, sumX; /* We assume the input is array of numeric */ deconstruct_array(transarray, NUMERICOID, -1, false, 'i', &transdatums, &ndatums); if (ndatums != 3) elog(ERROR, "expected 3-element numeric array"); N = DatumGetNumeric(transdatums[0]); sumX = DatumGetNumeric(transdatums[1]); /* ignore sumX2 */ /* SQL92 defines AVG of no values to be NULL */ /* N is zero iff no digits (cf. numeric_uminus) */ if (N->varlen == NUMERIC_HDRSZ) PG_RETURN_NULL(); PG_RETURN_DATUM(DirectFunctionCall2(numeric_div, NumericGetDatum(sumX), NumericGetDatum(N)));}Datumnumeric_variance(PG_FUNCTION_ARGS){ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); Datum *transdatums; int ndatums; Numeric N, sumX, sumX2, res; NumericVar vN, vsumX, vsumX2, vNminus1; int rscale; /* We assume the input is array of numeric */ deconstruct_array(transarray, NUMERICOID, -1, false, 'i', &transdatums, &ndatums); if (ndatums != 3) elog(ERROR, "expected 3-element numeric array"); N = DatumGetNumeric(transdatums[0]); sumX = DatumGetNumeric(transdatums[1]); sumX2 = DatumGetNumeric(transdatums[2]); if (NUMERIC_IS_NAN(N) || NUMERIC_IS_NAN(sumX) || NUMERIC_IS_NAN(sumX2)) PG_RETURN_NUMERIC(make_result(&const_nan)); /* Sample variance is undefined when N is 0 or 1, so return NULL */ init_var(&vN); set_var_from_num(N, &vN); if (cmp_var(&vN, &const_one) <= 0) { free_var(&vN); PG_RETURN_NULL(); } init_var(&vNminus1); sub_var(&vN, &const_one, &vNminus1); init_var(&vsumX); set_var_from_num(sumX, &vsumX); init_var(&vsumX2); set_var_from_num(sumX2, &vsumX2); /* compute rscale for mul_var calls */ rscale = vsumX.dscale * 2; mul_var(&vsumX, &vsumX, &vsumX, rscale); /* vsumX = sumX * sumX */ mul_var(&vN, &vsumX2, &vsumX2, rscale); /* vsumX2 = N * sumX2 */ sub_var(&vsumX2, &vsumX, &vsumX2); /* N * sumX2 - sumX * sumX */ if (cmp_var(&vsumX2, &const_zero) <= 0) { /* Watch out for roundoff error producing a negative numerator */ res = make_result(&const_zero); } else { mul_var(&vN, &vNminus1, &vNminus1, 0); /* N * (N - 1) */ rscale = select_div_scale(&vsumX2, &vNminus1); div_var(&vsumX2, &vNminus1, &vsumX, rscale, true); /* variance */ res = make_result(&vsumX); } free_var(&vN); free_var(&vNminus1); free_var(&vsumX); free_var(&vsumX2); PG_RETURN_NUMERIC(res);}Datumnumeric_stddev(PG_FUNCTION_ARGS){ ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); Datum *transdatums; int ndatums; Numeric N, sumX, sumX2, res; NumericVar vN, vsumX, vsumX2, vNminus1; int rscale; /* We assume the input is array of numeric */ deconstruct_array(transarray, NUMERICOID, -1, false, 'i', &transdatums, &ndatums); if (ndatums != 3) elog(ERROR, "expected 3-element numeric array"); N = DatumGetNumeric(transdatums[0]); sumX = DatumGetNumeric(transdatums[1]); sumX2 = DatumGetNumeric(transdatums[2]); if (NUMERIC_IS_NAN(N) || NUMERIC_IS_NAN(sumX) || NUMERIC_IS_NAN(sumX2)) PG_RETURN_NUMERIC(make_result(&const_nan)); /* Sample stddev is undefined when N is 0 or 1, so return NULL */ init_var(&vN); set_var_from_num(N, &vN); if (cmp_var(&vN, &const_one) <= 0) { free_var(&vN); PG_RETURN_NULL(); } init_var(&vNminus1); sub_var(&vN, &const_one, &vNminus1); init_var(&vsumX); set_var_from_num(sumX, &vsumX); init_var(&vsumX2); set_var_from_num(sumX2, &vsumX2); /* compute rscale for mul_var calls */ rscale = vsumX.dscale * 2; mul_var(&vsumX, &vsumX, &vsumX, rscale); /* vsumX = sumX * sumX */ mul_var(&vN, &vsumX2, &vsumX2, rscale); /* vsumX2 = N * sumX2 */ sub_var(&vsumX2, &vsumX, &vsumX2); /* N * sumX2 - sumX * sumX */ if (cmp_var(&vsumX2, &const_zero) <= 0) { /* Watch out for roundoff error producing a negative numerator */ res = make_result(&const_zero); } else { mul_var(&vN, &vNminus1, &vNminus1, 0); /* N * (N - 1) */ rscale = select_div_scale(&vsumX2, &vNminus1); div_var(&vsumX2, &vNminus1, &vsumX, rscale, true); /* variance */ sqrt_var(&vsumX, &vsumX, rscale); /* stddev */ res = make_result(&vsumX); }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -