📄 slru.c
字号:
slru_errcause = SLRU_READ_FAILED; slru_errno = errno; close(fd); return false; } if (close(fd)) { slru_errcause = SLRU_CLOSE_FAILED; slru_errno = errno; return false; } return true;}/* * Physical write of a page from a buffer slot * * On failure, we cannot just ereport(ERROR) since caller has put state in * shared memory that must be undone. So, we return FALSE and save enough * info in static variables to let SlruReportIOError make the report. * * For now, assume it's not worth keeping a file pointer open across * independent read/write operations. We do batch operations during * SimpleLruFlush, though. * * fdata is NULL for a standalone write, pointer to open-file info during * SimpleLruFlush. */static boolSlruPhysicalWritePage(SlruCtl ctl, int pageno, int slotno, SlruFlush fdata){ SlruShared shared = ctl->shared; int segno = pageno / SLRU_PAGES_PER_SEGMENT; int rpageno = pageno % SLRU_PAGES_PER_SEGMENT; int offset = rpageno * BLCKSZ; char path[MAXPGPATH]; int fd = -1; /* * During a Flush, we may already have the desired file open. */ if (fdata) { int i; for (i = 0; i < fdata->num_files; i++) { if (fdata->segno[i] == segno) { fd = fdata->fd[i]; break; } } } if (fd < 0) { /* * If the file doesn't already exist, we should create it. It is * possible for this to need to happen when writing a page that's not * first in its segment; we assume the OS can cope with that. (Note: * it might seem that it'd be okay to create files only when * SimpleLruZeroPage is called for the first page of a segment. * However, if after a crash and restart the REDO logic elects to * replay the log from a checkpoint before the latest one, then it's * possible that we will get commands to set transaction status of * transactions that have already been truncated from the commit log. * Easiest way to deal with that is to accept references to * nonexistent files here and in SlruPhysicalReadPage.) * * Note: it is possible for more than one backend to be executing * this code simultaneously for different pages of the same file. * Hence, don't use O_EXCL or O_TRUNC or anything like that. */ SlruFileName(ctl, path, segno); fd = BasicOpenFile(path, O_RDWR | O_CREAT | PG_BINARY, S_IRUSR | S_IWUSR); if (fd < 0) { slru_errcause = SLRU_OPEN_FAILED; slru_errno = errno; return false; } if (fdata) { fdata->fd[fdata->num_files] = fd; fdata->segno[fdata->num_files] = segno; fdata->num_files++; } } if (lseek(fd, (off_t) offset, SEEK_SET) < 0) { slru_errcause = SLRU_SEEK_FAILED; slru_errno = errno; if (!fdata) close(fd); return false; } errno = 0; if (write(fd, shared->page_buffer[slotno], BLCKSZ) != BLCKSZ) { /* if write didn't set errno, assume problem is no disk space */ if (errno == 0) errno = ENOSPC; slru_errcause = SLRU_WRITE_FAILED; slru_errno = errno; if (!fdata) close(fd); return false; } /* * If not part of Flush, need to fsync now. We assume this happens * infrequently enough that it's not a performance issue. */ if (!fdata) { if (ctl->do_fsync && pg_fsync(fd)) { slru_errcause = SLRU_FSYNC_FAILED; slru_errno = errno; close(fd); return false; } if (close(fd)) { slru_errcause = SLRU_CLOSE_FAILED; slru_errno = errno; return false; } } return true;}/* * Issue the error message after failure of SlruPhysicalReadPage or * SlruPhysicalWritePage. Call this after cleaning up shared-memory state. */static voidSlruReportIOError(SlruCtl ctl, int pageno, TransactionId xid){ int segno = pageno / SLRU_PAGES_PER_SEGMENT; int rpageno = pageno % SLRU_PAGES_PER_SEGMENT; int offset = rpageno * BLCKSZ; char path[MAXPGPATH]; SlruFileName(ctl, path, segno); errno = slru_errno; switch (slru_errcause) { case SLRU_OPEN_FAILED: ereport(ERROR, (errcode_for_file_access(), errmsg("could not access status of transaction %u", xid), errdetail("could not open file \"%s\": %m", path))); break; case SLRU_SEEK_FAILED: ereport(ERROR, (errcode_for_file_access(), errmsg("could not access status of transaction %u", xid), errdetail("could not seek in file \"%s\" to offset %u: %m", path, offset))); break; case SLRU_READ_FAILED: ereport(ERROR, (errcode_for_file_access(), errmsg("could not access status of transaction %u", xid), errdetail("could not read from file \"%s\" at offset %u: %m", path, offset))); break; case SLRU_WRITE_FAILED: ereport(ERROR, (errcode_for_file_access(), errmsg("could not access status of transaction %u", xid), errdetail("could not write to file \"%s\" at offset %u: %m", path, offset))); break; case SLRU_FSYNC_FAILED: ereport(ERROR, (errcode_for_file_access(), errmsg("could not access status of transaction %u", xid), errdetail("could not fsync file \"%s\": %m", path))); break; case SLRU_CLOSE_FAILED: ereport(ERROR, (errcode_for_file_access(), errmsg("could not access status of transaction %u", xid), errdetail("could not close file \"%s\": %m", path))); break; default: /* can't get here, we trust */ elog(ERROR, "unrecognized SimpleLru error cause: %d", (int) slru_errcause); break; }}/* * Select the slot to re-use when we need a free slot. * * The target page number is passed because we need to consider the * possibility that some other process reads in the target page while * we are doing I/O to free a slot. Hence, check or recheck to see if * any slot already holds the target page, and return that slot if so. * Thus, the returned slot is *either* a slot already holding the pageno * (could be any state except EMPTY), *or* a freeable slot (state EMPTY * or CLEAN). * * Control lock must be held at entry, and will be held at exit. */static intSlruSelectLRUPage(SlruCtl ctl, int pageno){ SlruShared shared = ctl->shared; /* Outer loop handles restart after I/O */ for (;;) { int slotno; int bestslot = 0; unsigned int bestcount = 0; /* See if page already has a buffer assigned */ for (slotno = 0; slotno < NUM_SLRU_BUFFERS; slotno++) { if (shared->page_number[slotno] == pageno && shared->page_status[slotno] != SLRU_PAGE_EMPTY) return slotno; } /* * If we find any EMPTY slot, just select that one. Else locate the * least-recently-used slot that isn't the latest page. */ for (slotno = 0; slotno < NUM_SLRU_BUFFERS; slotno++) { if (shared->page_status[slotno] == SLRU_PAGE_EMPTY) return slotno; if (shared->page_lru_count[slotno] > bestcount && shared->page_number[slotno] != shared->latest_page_number) { bestslot = slotno; bestcount = shared->page_lru_count[slotno]; } } /* * If the selected page is clean, we're set. */ if (shared->page_status[bestslot] == SLRU_PAGE_CLEAN) return bestslot; /* * We need to do I/O. Normal case is that we have to write it out, * but it's possible in the worst case to have selected a read-busy * page. In that case we just wait for someone else to complete the * I/O, which we can do by waiting for the per-buffer lock. */ if (shared->page_status[bestslot] == SLRU_PAGE_READ_IN_PROGRESS) { LWLockRelease(shared->ControlLock); LWLockAcquire(shared->buffer_locks[bestslot], LW_SHARED); LWLockRelease(shared->buffer_locks[bestslot]); LWLockAcquire(shared->ControlLock, LW_EXCLUSIVE); } else SimpleLruWritePage(ctl, bestslot, NULL); /* * Now loop back and try again. This is the easiest way of dealing * with corner cases such as the victim page being re-dirtied while we * wrote it. */ }}/* * Flush dirty pages to disk during checkpoint or database shutdown */voidSimpleLruFlush(SlruCtl ctl, bool checkpoint){ SlruShared shared = ctl->shared; SlruFlushData fdata; int slotno; int pageno = 0; int i; bool ok; /* * Find and write dirty pages */ fdata.num_files = 0; LWLockAcquire(shared->ControlLock, LW_EXCLUSIVE); for (slotno = 0; slotno < NUM_SLRU_BUFFERS; slotno++) { SimpleLruWritePage(ctl, slotno, &fdata); /* * When called during a checkpoint, we cannot assert that the slot is * clean now, since another process might have re-dirtied it already. * That's okay. */ Assert(checkpoint || shared->page_status[slotno] == SLRU_PAGE_EMPTY || shared->page_status[slotno] == SLRU_PAGE_CLEAN); } LWLockRelease(shared->ControlLock); /* * Now fsync and close any files that were open */ ok = true; for (i = 0; i < fdata.num_files; i++) { if (ctl->do_fsync && pg_fsync(fdata.fd[i])) { slru_errcause = SLRU_FSYNC_FAILED; slru_errno = errno; pageno = fdata.segno[i] * SLRU_PAGES_PER_SEGMENT; ok = false; } if (close(fdata.fd[i])) { slru_errcause = SLRU_CLOSE_FAILED; slru_errno = errno; pageno = fdata.segno[i] * SLRU_PAGES_PER_SEGMENT; ok = false; } } if (!ok) SlruReportIOError(ctl, pageno, InvalidTransactionId);}/* * Remove all segments before the one holding the passed page number */voidSimpleLruTruncate(SlruCtl ctl, int cutoffPage){ SlruShared shared = ctl->shared; int slotno; /* * The cutoff point is the start of the segment containing cutoffPage. */ cutoffPage -= cutoffPage % SLRU_PAGES_PER_SEGMENT; /* * Scan shared memory and remove any pages preceding the cutoff page, to * ensure we won't rewrite them later. (Since this is normally called in * or just after a checkpoint, any dirty pages should have been flushed * already ... we're just being extra careful here.) */ LWLockAcquire(shared->ControlLock, LW_EXCLUSIVE);restart:; /* * While we are holding the lock, make an important safety check: the * planned cutoff point must be <= the current endpoint page. Otherwise we * have already wrapped around, and proceeding with the truncation would * risk removing the current segment. */ if (ctl->PagePrecedes(shared->latest_page_number, cutoffPage)) { LWLockRelease(shared->ControlLock); ereport(LOG, (errmsg("could not truncate directory \"%s\": apparent wraparound", ctl->Dir))); return; } for (slotno = 0; slotno < NUM_SLRU_BUFFERS; slotno++) { if (shared->page_status[slotno] == SLRU_PAGE_EMPTY) continue; if (!ctl->PagePrecedes(shared->page_number[slotno], cutoffPage)) continue; /* * If page is CLEAN, just change state to EMPTY (expected case). */ if (shared->page_status[slotno] == SLRU_PAGE_CLEAN) { shared->page_status[slotno] = SLRU_PAGE_EMPTY; continue; } /* * Hmm, we have (or may have) I/O operations acting on the page, so * we've got to wait for them to finish and then start again. This is * the same logic as in SlruSelectLRUPage. */ if (shared->page_status[slotno] == SLRU_PAGE_READ_IN_PROGRESS) { LWLockRelease(shared->ControlLock); LWLockAcquire(shared->buffer_locks[slotno], LW_SHARED); LWLockRelease(shared->buffer_locks[slotno]); LWLockAcquire(shared->ControlLock, LW_EXCLUSIVE); } else SimpleLruWritePage(ctl, slotno, NULL); goto restart; } LWLockRelease(shared->ControlLock); /* Now we can remove the old segment(s) */ (void) SlruScanDirectory(ctl, cutoffPage, true);}/* * SimpleLruTruncate subroutine: scan directory for removable segments. * Actually remove them iff doDeletions is true. Return TRUE iff any * removable segments were found. Note: no locking is needed. * * This can be called directly from clog.c, for reasons explained there. */boolSlruScanDirectory(SlruCtl ctl, int cutoffPage, bool doDeletions){ bool found = false; DIR *cldir; struct dirent *clde; int segno; int segpage; char path[MAXPGPATH]; /* * The cutoff point is the start of the segment containing cutoffPage. * (This is redundant when called from SimpleLruTruncate, but not when * called directly from clog.c.) */ cutoffPage -= cutoffPage % SLRU_PAGES_PER_SEGMENT; cldir = AllocateDir(ctl->Dir); while ((clde = ReadDir(cldir, ctl->Dir)) != NULL) { if (strlen(clde->d_name) == 4 && strspn(clde->d_name, "0123456789ABCDEF") == 4) { segno = (int) strtol(clde->d_name, NULL, 16); segpage = segno * SLRU_PAGES_PER_SEGMENT; if (ctl->PagePrecedes(segpage, cutoffPage)) { found = true; if (doDeletions) { snprintf(path, MAXPGPATH, "%s/%s", ctl->Dir, clde->d_name); ereport(DEBUG2, (errmsg("removing file \"%s\"", path))); unlink(path); } } } } FreeDir(cldir); return found;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -