⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 geqo.sgml

📁 PostgreSQL 8.1.4的源码 适用于Linux下的开源数据库系统
💻 SGML
字号:
<!--$PostgreSQL: pgsql/doc/src/sgml/geqo.sgml,v 1.33 2005/10/25 13:38:09 momjian Exp $Genetic Optimizer--> <chapter id="geqo">  <chapterinfo>   <author>    <firstname>Martin</firstname>    <surname>Utesch</surname>    <affiliation>     <orgname>      University of Mining and Technology     </orgname>     <orgdiv>      Institute of Automatic Control     </orgdiv>     <address>      <city>       Freiberg      </city>      <country>       Germany      </country>     </address>    </affiliation>   </author>   <date>1997-10-02</date>  </chapterinfo>  <title id="geqo-title">Genetic Query Optimizer</title>  <para>   <note>    <title>Author</title>    <para>     Written by Martin Utesch (<email>utesch@aut.tu-freiberg.de</email>)     for the Institute of Automatic Control at the University of Mining and Technology in Freiberg, Germany.    </para>   </note>  </para>  <sect1 id="geqo-intro">   <title>Query Handling as a Complex Optimization Problem</title>   <para>    Among all relational operators the most difficult one to process    and optimize is the <firstterm>join</firstterm>. The number of    alternative plans to answer a query grows exponentially with the    number of joins included in it. Further optimization effort is    caused by the support of a variety of <firstterm>join    methods</firstterm> (e.g., nested loop, hash join, merge join in    <productname>PostgreSQL</productname>) to process individual joins    and a diversity of <firstterm>indexes</firstterm> (e.g., R-tree,    B-tree, hash in <productname>PostgreSQL</productname>) as access    paths for relations.   </para>   <para>    The current <productname>PostgreSQL</productname> optimizer    implementation performs a <firstterm>near-exhaustive    search</firstterm> over the space of alternative strategies. This    algorithm, first introduced in the <quote>System R</quote>    database, produces a near-optimal join order, but can take an    enormous amount of time and memory space when the number of joins    in the query grows large. This makes the ordinary    <productname>PostgreSQL</productname> query optimizer    inappropriate for queries that join a large number of tables.   </para>   <para>    The Institute of Automatic Control at the University of Mining and    Technology, in Freiberg, Germany, encountered the described problems as its    folks wanted to take the <productname>PostgreSQL</productname> DBMS as the backend for a decision    support knowledge based system for the maintenance of an electrical    power grid. The DBMS needed to handle large join queries for the    inference machine of the knowledge based system.   </para>   <para>    Performance difficulties in exploring the space of possible query    plans created the demand for a new optimization technique to be developed.   </para>   <para>    In the following we describe the implementation of a    <firstterm>Genetic Algorithm</firstterm> to solve the join    ordering problem in a manner that is efficient for queries    involving large numbers of joins.   </para>  </sect1>  <sect1 id="geqo-intro2">   <title>Genetic Algorithms</title>   <para>    The genetic algorithm (<acronym>GA</acronym>) is a heuristic optimization method which    operates through    nondeterministic, randomized search. The set of possible solutions for the    optimization problem is considered as a    <firstterm>population</firstterm> of <firstterm>individuals</firstterm>.    The degree of adaptation of an individual to its environment is specified    by its <firstterm>fitness</firstterm>.   </para>   <para>    The coordinates of an individual in the search space are represented    by <firstterm>chromosomes</firstterm>, in essence a set of character    strings. A <firstterm>gene</firstterm> is a    subsection of a chromosome which encodes the value of a single parameter    being optimized. Typical encodings for a gene could be <firstterm>binary</firstterm> or    <firstterm>integer</firstterm>.   </para>   <para>    Through simulation of the evolutionary operations <firstterm>recombination</firstterm>,    <firstterm>mutation</firstterm>, and    <firstterm>selection</firstterm> new generations of search points are found    that show a higher average fitness than their ancestors.   </para>   <para>    According to the <systemitem class="resource">comp.ai.genetic</> <acronym>FAQ</acronym> it cannot be stressed too    strongly that a <acronym>GA</acronym> is not a pure random search for a solution to a    problem. A <acronym>GA</acronym> uses stochastic processes, but the result is distinctly    non-random (better than random).    </para>   <figure id="geqo-diagram">    <title>Structured Diagram of a Genetic Algorithm</title>    <informaltable frame="none">     <tgroup cols="2">      <tbody>       <row>        <entry>P(t)</entry>        <entry>generation of ancestors at a time t</entry>       </row>       <row>        <entry>P''(t)</entry>        <entry>generation of descendants at a time t</entry>       </row>      </tbody>     </tgroup>    </informaltable><literallayout class="monospaced">+=========================================+|&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;  Algorithm GA  &lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;|+=========================================+| INITIALIZE t := 0                       |+=========================================+| INITIALIZE P(t)                         |+=========================================+| evaluate FITNESS of P(t)                |+=========================================+| while not STOPPING CRITERION do         ||   +-------------------------------------+|   | P'(t)  := RECOMBINATION{P(t)}       ||   +-------------------------------------+|   | P''(t) := MUTATION{P'(t)}           ||   +-------------------------------------+|   | P(t+1) := SELECTION{P''(t) + P(t)}  ||   +-------------------------------------+|   | evaluate FITNESS of P''(t)          ||   +-------------------------------------+|   | t := t + 1                          |+===+=====================================+</literallayout>   </figure>  </sect1>  <sect1 id="geqo-pg-intro">   <title>Genetic Query Optimization (<acronym>GEQO</acronym>) in PostgreSQL</title>   <para>    The <acronym>GEQO</acronym> module approaches the query    optimization problem as though it were the well-known traveling salesman    problem (<acronym>TSP</acronym>).    Possible query plans are encoded as integer strings. Each string    represents the join order from one relation of the query to the next.    For example, the join tree<literallayout class="monospaced">   /\  /\ 2 /\ 34  1</literallayout>    is encoded by the integer string '4-1-3-2',    which means, first join relation '4' and '1', then '3', and    then '2', where 1, 2, 3, 4 are relation IDs within the    <productname>PostgreSQL</productname> optimizer.   </para>   <para>    Parts of the <acronym>GEQO</acronym> module are adapted from D. Whitley's Genitor    algorithm.   </para>   <para>    Specific characteristics of the <acronym>GEQO</acronym>    implementation in <productname>PostgreSQL</productname>    are:    <itemizedlist spacing="compact" mark="bullet">     <listitem>      <para>       Usage of a <firstterm>steady state</firstterm> <acronym>GA</acronym> (replacement of the least fit       individuals in a population, not whole-generational replacement)       allows fast convergence towards improved query plans. This is       essential for query handling with reasonable time;      </para>     </listitem>     <listitem>      <para>       Usage of <firstterm>edge recombination crossover</firstterm>       which is especially suited to keep edge losses low for the       solution of the <acronym>TSP</acronym> by means of a       <acronym>GA</acronym>;      </para>     </listitem>     <listitem>      <para>       Mutation as genetic operator is deprecated so that no repair       mechanisms are needed to generate legal <acronym>TSP</acronym> tours.      </para>     </listitem>    </itemizedlist>   </para>   <para>    The <acronym>GEQO</acronym> module allows    the <productname>PostgreSQL</productname> query optimizer to    support large join queries effectively through    non-exhaustive search.   </para>  <sect2 id="geqo-future">   <title>Future Implementation Tasks for    <productname>PostgreSQL</> <acronym>GEQO</acronym></title>     <para>      Work is still needed to improve the genetic algorithm parameter      settings.      In file <filename>src/backend/optimizer/geqo/geqo_main.c</filename>,      routines      <function>gimme_pool_size</function> and <function>gimme_number_generations</function>,      we have to find a compromise for the parameter settings      to satisfy two competing demands:      <itemizedlist spacing="compact">       <listitem>        <para>         Optimality of the query plan        </para>       </listitem>       <listitem>        <para>         Computing time        </para>       </listitem>      </itemizedlist>     </para>     <para>      At a more basic level, it is not clear that solving query optimization      with a GA algorithm designed for TSP is appropriate.  In the TSP case,      the cost associated with any substring (partial tour) is independent      of the rest of the tour, but this is certainly not true for query      optimization.  Thus it is questionable whether edge recombination      crossover is the most effective mutation procedure.     </para>   </sect2>  </sect1> <sect1 id="geqo-biblio">  <title>Further Reading</title>  <para>   The following resources contain additional information about   genetic algorithms:   <itemizedlist>    <listitem>     <para>      <ulink url="http://www.cs.bham.ac.uk/Mirrors/ftp.de.uu.net/EC/clife/www/location.htm">      The Hitch-Hiker's Guide to Evolutionary Computation</ulink>, (FAQ for <ulink      url="news://comp.ai.genetic"></ulink>)     </para>    </listitem>       <listitem>     <para>      <ulink url="http://www.red3d.com/cwr/evolve.html">      Evolutionary Computation and its application to art and design</ulink>, by      Craig Reynolds     </para>    </listitem>    <listitem>     <para>      <xref linkend="ELMA04">     </para>    </listitem>    <listitem>     <para>      <xref linkend="FONG">     </para>    </listitem>   </itemizedlist>  </para> </sect1></chapter><!-- Keep this comment at the end of the fileLocal variables:mode:sgmlsgml-omittag:nilsgml-shorttag:tsgml-minimize-attributes:nilsgml-always-quote-attributes:tsgml-indent-step:1sgml-indent-data:tsgml-parent-document:nilsgml-default-dtd-file:"./reference.ced"sgml-exposed-tags:nilsgml-local-catalogs:("/usr/lib/sgml/catalog")sgml-local-ecat-files:nilEnd:-->

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -