⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 3.25.huaidai.ps

📁 是multiuser detection 这本书的习题解答, 很有用的书.
💻 PS
📖 第 1 页 / 共 4 页
字号:
3801E07E2603C03E141F2607803F15C0120F495A48163F001E1780123E003C5B4A147F007C1700EA78015CD8F8035D4A5C120013074A13015F130F5C1603011F5D5CA21607013F5D5CA2160F017FEDE00F91C7FCA2161FEFC01F181EA2043F133E047F133C17806D02FF137C4B14786E4814F8011F903907CFC0F09139C00F8FC1903B0FF03F07E3E0903B03FFFC03FFC06DD9F0011380903B003FC0007E00383577B33F>117 D<EB0FC0D93FF0EC03C0D97FFCEC07E0D9F07C140F3801E07E2603C03E141F2607803F15C0120F495A48163F001E1780123E003C5B4A147F007C1700EA78015CD8F8035D4A5C120013074A13015F130F5C1603011F5D5CA21607013F5D5CA2160F017F5D91C7FCA2161F5FA3163F4C5AA26D14FF5D6E4890C7FC011F5B6E5A90380FF03F903903FFFCFE6D13F09038003FC0EC00015EA215035EA2D803C0495AEA07F0000F4A5A121F4B5A4B5A4991C8FC5D018013FE391E0001FC001F495A6CEB07E09038801FC03907E07F802603FFFEC9FCC613F8EB3F80334C77B339>121D E /Fn 12 120 df<ED1FFE4AB512E0020F14FC023F14FF9126FFE00713C0D903FEC713F0D907F0EC3FF8D91FC06E7E49C8EA07FE017E6F7E017883496F7F48486F7F120349834848167F01F88313FE6D6C153F486D82A4805CA37E6C5B6C48C95BD80078167F90CAFCA261A218FF61A24D5B615F96C7FC4D5A60170F4D5AEF3FE04D5A4D5A4C48C8FCEE07FCEE1FF092381FFFC091260FFFFEC9FCA2EEFFE091C7EA07FCEE00FFEF3FC0EF1FF0717EEF07FE717E717F717F85727E727EA285727EA2727EA31A80A2841AC0A3EA07E0EA1FF8487E487EB5FCA51A80605BA26C48180013F001C05E007CCA5B7E4E5A7E6D4C5A6C6C5F000717FF01F04B5B6C6C4B5B6C6C5F6CB4030F90C7FC6D6C4A5AD93FF04A5AD90FFCECFFF8902707FFE00713E0010190B612806D6C92C8FC020F14F8020314E09126001FFEC9FC42757AF14F>51D<183CA2187C18FCA217011703A21707170FA2171FA2173F177F177717F7EE01E717C716031787EE0707160F160E161E163C1638167816F016E0150116C01503ED078016005D151E151C153C15385D15F05D14014A5A5D14074AC7FC140E141E141C143C5C147014F0495A5C13035C49C8FC5B130E131E5B1338137813705B12015B1203485A90C9FC5A121E121C123C12385A12F0BCFCA5CAD80FFCC7FCB3A44D7E4D7E94B512C0030FB712FCA548737DF24F>I<016017C001781603017E160FD97FC0ED7F8002F8913807FF00DAFFC0EBFFFE92B65A606018C0604DC7FC17F817E0017892C8FC020F13F891CBFCB3A8ED07FE92387FFFC00203B512F891390FF803FE91391F8000FF027CC7EA3FC04A6E7ED979E06E7ED97BC06E7ED97F806E7E91C87F017E6F7E017C6F13801378F07FC0017017E090CAFCF03FF0A219F8181FA219FCA319FE180FA419FFA7EA1FE0487E487E487EA419FEA2181F5B4917FC5B0070CAFC183F007818F8A26C18F0187F003E18E0001E17FF001F18C06C4C13806C7E6D4B13006C6C4B5A6C6C4B5A6D4B5AD800FE4B5A017F4B5AD93FC049485AD91FF001075BD907FFD93FFEC7FC6D90B55A010015F0023F14C0020749C8FC020013E0407579F14F>I<BD12FEA5D8003F01F0C96C7F01074916034BEE007F6D190F871B018788A2F43F801C1FA21C0FA21C07A31C03A21DC0A31C01A6F400E0191CA41D00A5193CA4197CA219FC18011803180F18FF92B7FCA503C0C7FC180F180318011800197CA2193CA4191CA41D07A41D0E96C9FCA51D1E1D1CA41D3CA31D381D78A31DF8A21C01A2F403F0A21C07A21C0F1C1F1C3FF4FFE0631B0749191F6F4CB5FC013F6D163FBEFC1DC0A4607678F56C>69 D<B80203B712FCA5D8003F01FCCAECF000010701E0051F1380A26D497190C7FCB3B3AA92BBFCA503C0CA120FB3B3AF496D4D7FA2013F01FC94B512F0B80203B712FCA5667678F577>72 D<B812E0A5D8003F49CCFC010713F05D6D5BB3B3B3AC1C70A51CE0A81B01A31CC01B03A41B07A21B0FA21B1FA2F33F80A21B7F1BFF62621A0F621A7F494DB5FC6F150F013F6D4AB61200BDFCA5547678F563>76D<ED1FFC4AB512C0020714F091391FF00FFC91397F8001FFD901FEC7EA7FC049486E7E49486E7E49486E7E49486E7E49486E7E4948140101FF824890C91380A24848EE7FC0A2485A000FEF3FE05BA2001F18F0181F485AA3007F18F8A349160FA212FF90B9FCA301E0CBFCAB127F7FA3123FA36C7EA219386C7E1978000718707F000318F06C6C17E018016C6DED03C06D6C1680013F16076D6CED0F006D6C151E6D6C5D6D6C5D6DB44A5A6D6C6C495ADA3FE0EB1F80DA0FFE01FEC7FC0203B512F8DA007F13E0DB07FEC8FC3D4D7BCB46>101D<EB01F0EA07FFB5FCA51201EA007F133FA2131FB3B10507B512FEA5050114C07149C7FC19F019C0614EC8FC60EF01F04D5A604D5A4DC9FC173E5F5F4C5A4C5A4C5A4C5A4CCAFC163C5E16FC15014B7E4B7E5D033F7F037C7F5D9139F1F07FE09139F3E03FF0ECF7C09139FF801FF8ED000F02FC804A6D7E4A13034A80707F8284717E173F84717E170F84717EA2717E717FA2717F727EA2727E85181F858585496C83D9FFFC037F13F0B600FC0103B612C0A54A787AF753>107 D<D901F0902601FFC0ED0FFED807FF021F01FC92B512E0B5027F01FF020314F8922601FC0101C090390FE00FFE922803E0003FE090391F0001FFDB0F80D91FF8017C6D13C04BC7000F4A147FC6023C912707FC01E06E7E013F496E6C48486E7E011F0170DA01FF496E7E03F0160790260FF1E04CC8FCDAF3C06E019E6F7E4B169C02F717BC92C913B802FFDC7FF86F7E4A5FA34A5FA44A5FB3B3A8496C4C6C4B7ED97FFF030301F8031F13C0B7D88007B600FC013FB612E0A57B4B7ACA86>109 D<ED07FE92387FFFE00203B512FC91390FFC03FF913A3FC0003FC04AC7EA0FE0D901FEEC07F8D903F8EC01FC49486E7E4948157F49486F7E49486F7E017F8349C96C7E4916070001844848707EA2000784491601000F84A24848701380A2003F19C0A349177F007F19E0A412FF1AF0AD007F19E0A26D17FFA2003F19C0A46C6C4C1380A2000F1900A26C6C4C5AA26C6C4C5A0001606D160F6C606D6C4B5A6D6C4B5AA26D6C4B5AD907F003FEC7FCD903FCEC03FC6D6C4A5A6D6C6CEB1FF0DA3FE0EB7FC091270FFC03FFC8FC0203B512FCDA007F13E0DB07FEC9FC444D7BCB4F>111D<D903E0EB1FE0D80FFFECFFFCB501037F923907E01F8092391F807FC092383E00FF4B4813E000011478D8007F13F090383FE1E015C0EB1FE39126E7800013C0EF7F8092C7EA3F0002EF91C7FC14EE14FE5CA45CA55CB3B3A480133F90B5FCB712C0A5334B7ACA3D>114D<B600F0017FB500F849B512FCA5000149C849C8003F13E026007FF8DB3FF8030F13004A031F705A013F4DED03F8180F011F755A735E6D6C1507667315036D6C63A24E7E6D6C50C7FC85606D6C031C160E866FEC387F6D63866FEC703F027F62866FDAE01F1578023F1A70866F902601C00F15F0021F62866F90260380071401020F62866F90260700031403020762866F010E01011407020397C8FC866F496D5C6E190E053C1580DC8038027F131E6E191C057815C0DCC070023F133C037F183805F015E07048021F1378033F187004E116F092261FF1C0020F5BA204F316F892260FFB80913807F9C0A204FF16FD6F90C86CB45AA36F486F90C9FCA36F486F5AA36F48167CA24C163C047016386E4B7EC973>119 DE endTeXDict begin1 0 bop 1146 569 a Fn(ELE533)52 b(Homew)l(ork)f(4)1586951 y Fm(Huaiyu)40 b(Dai)1574 1271 y Fl(25)f(F)-10 b(eb)39b(1999)-186 1681 y Fk(Problem)23 b(3.25.)40 b Fj(Find)21b Fi(E)6 b Fj([)p Fi(Q)p Fj(\()p Fh(k)p Fk(X)p Fh(k)pFj(\)])22 b(if)e Fk(X)h Fj(is)h(a)f(complexed-v)-5 b(alued,)23b(zero-mean)f(Gaussian)f(three-dimensional)-186 1801y(v)m(ector)34 b(with)e(indep)s(enden)m(t)i(co)s(e\016cien)m(ts)f(with)g(indep)s(enden)m(t)g(real)f(and)h(imaginary)d(parts)i(and)h(v)-5b(ariances)1490 1977 y Fi(E)6 b Fj([)p Fh(j)p Fk(X)17081992 y Fg(1)1747 1977 y Fh(j)1775 1936 y Fg(2)1814 1977y Fj(])84 b(=)e(2)p Fi(\015)2188 1936 y Fg(2)2228 1977y Fi(;)1490 2123 y(E)6 b Fj([)p Fh(j)p Fk(X)1708 2138y Fg(2)1747 2123 y Fh(j)1775 2082 y Fg(2)1814 2123 yFj(])84 b(=)e(2)p Fi(\015)2188 2082 y Fg(2)2228 2123y Fi(;)1490 2268 y(E)6 b Fj([)p Fh(j)p Fk(X)1708 2283y Fg(3)1747 2268 y Fh(j)1775 2227 y Fg(2)1814 2268 yFj(])84 b(=)e(4)p Fi(\015)2188 2227 y Fg(2)2228 2268y Fi(:)-186 2530 y Fk(Solutions:)-186 2736 y Fj(As)33b(in)f(problem)f(3-24,)h(w)m(e)h(ha)m(v)m(e)1016 2981y Fi(U)38 b Fj(=)28 b Fh(k)p Fk(X)p Fh(k)1409 2940 yFg(2)1475 2981 y Fj(=)g Fk(X)1664 2940 y Ff(\003)17032981 y Fk(X)f Fj(=)g Fk(Y)2006 2940 y Ff(\003)2045 2981y Fk(\006Y)j Fj(=)2381 2873 y Fe(L)2345 2898 y Fd(X)23483081 y Fe(i)p Fg(=1)2481 2981 y Fi(\025)2538 2996 y Fe(i)25672981 y Fh(j)p Fi(Y)2652 2996 y Fe(i)2679 2981 y Fh(j)27072940 y Fg(2)3823 2981 y Fj(\(1\))-186 3232 y(where)44b Fi(\025)163 3247 y Fg(1)247 3232 y Fj(=)h Fi(\025)4253247 y Fg(2)509 3232 y Fj(=)g(2)p Fi(\015)735 3196 yFg(2)774 3232 y Fi(;)17 b(\025)875 3247 y Fg(3)959 3232y Fj(=)45 b(4)p Fi(\015)1185 3196 y Fg(2)1266 3232 yFj(And)f Fk(Y)h Fj(is)d(a)g(Gaussian)g(v)m(ector)i(obtained)e(from)gFk(X)g Fj(through)g(linear)-186 3352 y(transformation.It)28b(has)i(indep)s(enden)m(t)h(zero-mean)f(and)g(unit)f(v)-5b(ariance)29 b(co)s(e\016cien)m(ts)i(with)f(indep)s(enden)m(t)h(real)-186 3473 y(and)i(imaginary)d(parts.)-186 3679 y(With)d(partial)e(fraction)i(expansion)h(of)f(the)h(c)m(haracteristic)f(function\(with)gFc(L)-5 b(aplacian)29 b(T)-7 b(r)i(ansform)p Fj(\))26b(of)h Fh(k)p Fk(X)p Fh(k)3882 3643 y Fg(2)3921 3679y Fj(,)-186 3799 y(w)m(e)34 b(get)276 4042 y Fi(E)6 bFj([)p Fi(e)426 4001 y Ff(\000)p Fe(s)p Ff(k)p Fb(x)pFf(k)627 3977 y Fa(2)666 4042 y Fj(])27 b(=)864 3934y Fg(3)828 3959 y Fd(Y)824 4141 y Fe(i)p Fg(=1)1090 3974y Fj(1)p 965 4018 300 4 v 965 4110 a Fi(s\025)1068 4125y Fe(i)1118 4110 y Fj(+)22 b(1)1302 4042 y(=)1448 3934y Fg(3)1406 3959 y Fd(X)1409 4141 y Fe(i)p Fg(=1)16573974 y Fi(\013)1719 3989 y Fe(i)p 1552 4018 V 1552 4110a Fi(s\025)1655 4125 y Fe(i)1706 4110 y Fj(+)g(1)18904042 y(=)2159 3974 y(4)p 2004 4018 360 4 v 2004 4110a(1)f(+)h(4)p Fi(\015)2277 4081 y Fg(2)2317 4110 y Fi(s)23954042 y Fj(+)2619 3974 y Fh(\000)p Fj(2)p 2503 4018 V2503 4110 a(1)g(+)g(2)p Fi(\015)2777 4081 y Fg(2)28164110 y Fi(s)2894 4042 y Fj(+)3176 3974 y Fh(\000)p Fj(1)p3002 4018 475 4 v 3002 4110 a(\(1)g(+)g(2)p Fi(\015)33144081 y Fg(2)3353 4110 y Fi(s)p Fj(\))3437 4081 y Fg(2)38234042 y Fj(\(2\))-186 4378 y(With)32 b(in)m(v)m(erse)iFc(L)-5 b(aplacian)34 b(T)-7 b(r)i(ansform)31 b Fj(of)h(Eq.)h(2)f(w)m(e)i(get)f(the)g Fc(p)-5 b(df)32 b Fj(of)g Fh(k)p Fk(X)pFh(k)2607 4342 y Fg(2)774 4599 y Fi(f)822 4614 y Fe(U)8814599 y Fj(\()p Fi(u)p Fj(\))27 b(=)1177 4531 y(1)p 11534576 96 4 v 1153 4667 a Fi(\015)1209 4638 y Fg(2)12594599 y Fi(e)1304 4558 y Ff(\000)p Fe(u=)p Fg(4)p Fe(\015)15104534 y Fa(2)1571 4599 y Fh(\000)1704 4531 y Fj(1)p 16814576 V 1681 4667 a Fi(\015)1737 4638 y Fg(2)1786 4599y Fi(e)1831 4558 y Ff(\000)p Fe(u=)p Fg(2)p Fe(\015)20374534 y Fa(2)2099 4599 y Fh(\000)2256 4531 y Fj(1)p 22094576 145 4 v 2209 4667 a(4)p Fi(\015)2314 4638 y Fg(4)23634599 y Fi(ue)2464 4558 y Ff(\000)p Fe(u=)p Fg(2)p Fe(\015)26704534 y Fa(2)2709 4599 y Fi(;)17 b(u)27 b(>)g Fj(0)835b(\(3\))-186 4904 y(So)172 5115 y Fi(P)14 b Fj(\()p Fh(k)pFk(X)p Fh(k)26 b(\024)i Fi(x)p Fj(\))g(=)g Fi(P)14 bFj(\()p Fi(U)38 b Fh(\024)28 b Fi(x)1207 5074 y Fg(2)12475115 y Fj(\))83 b(=)1527 4998 y Fd(Z)1610 5024 y Fe(x)16505001 y Fa(2)1573 5186 y Fg(0)1705 5115 y Fi(f)1753 5130y Fe(U)1812 5115 y Fj(\()p Fi(u)p Fj(\))p Fi(du)13685351 y Fj(=)g(4\(1)21 b Fh(\000)i Fi(e)1829 5310 y Ff(\000)pFe(x)1924 5287 y Fa(2)1958 5310 y Fe(=)p Fg(4)p Fe(\015)20685287 y Fa(2)2108 5351 y Fj(\))f Fh(\000)h Fj(3\(1)e Fh(\000)iFi(e)2570 5310 y Ff(\000)p Fe(x)2665 5287 y Fa(2)26995310 y Fe(=)p Fg(2)p Fe(\015)2809 5287 y Fa(2)2849 5351y Fj(\))f(+)3065 5284 y(1)p 3017 5328 V 3017 5420 a(2)pFi(\015)3122 5391 y Fg(2)3171 5351 y Fi(x)3226 5310 yFg(2)3266 5351 y Fi(e)3311 5310 y Ff(\000)p Fe(x)34065287 y Fa(2)3440 5310 y Fe(=)p Fg(2)p Fe(\015)3550 5287y Fa(2)3823 5351 y Fj(\(4\))1857 5655 y(1)p eop2 1 bop -186 167 a Fj(Finally)360 426 y Fi(E)6 b Fj([)pFi(Q)p Fj(\()p Fh(k)p Fk(X)p Fh(k)p Fj(\)])83 b(=)1153358 y(1)p 1082 402 191 4 v 1082 420 a Fh(p)p 1165 420108 4 v 82 x Fj(2)p Fi(\031)1299 309 y Fd(Z)1382 335y Ff(1)1345 497 y Fg(0)1473 426 y Fi(P)14 b Fj(\()p Fh(k)pFk(X)p Fh(k)27 b(\024)h Fi(x)p Fj(\))17 b Fi(e)2060 385y Ff(\000)p Fe(x)2155 361 y Fa(2)2189 385 y Fe(=)p Fg(2)2264426 y Fi(dx)913 711 y Fj(=)83 b(2\(1)21 b Fh(\000)1329556 y Fd(s)p 1412 556 334 4 v 1507 644 a Fj(2)p Fi(\015)1612615 y Fg(2)p 1422 688 314 4 v 1422 780 a Fj(1)h(+)g(2)pFi(\015)1696 751 y Fg(2)1745 711 y Fj(\))g Fh(\000)hFj(3)p Fi(=)p Fj(2\(1)e Fh(\000)2260 556 y Fd(s)p 2343556 285 4 v 2437 644 a Fi(\015)2493 615 y Fg(2)p 2353688 265 4 v 2353 780 a Fj(1)h(+)g Fi(\015)2578 751 yFg(2)2627 711 y Fj(\))g(+)g(1)p Fi(=)p Fj(4)3138 644y Fi(\015)p 2942 688 451 4 v 2942 780 a Fj(\(1)f(+)hFi(\015)3204 751 y Fg(2)3244 780 y Fj(\))3282 751 y Fg(3)pFe(=)p Fg(2)3823 711 y Fj(\(5\))1857 5655 y(2)p eop enduserdict /end-hook known{end-hook}if

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -