⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 4.44.rickard.ps

📁 是multiuser detection 这本书的习题解答, 很有用的书.
💻 PS
📖 第 1 页 / 共 3 页
字号:
F0A21CE0A21B7F1CC01BFF1C80A2501300A2505A505AA2505A505A505A505A1AFF4F5B4F90C7FCF107FCF11FF8F17FF0953801FFC0013F04075BD9FFFCDB7FFEC8FCBA12F819E096C9FC18F0576279E165>68 D<B500FC071FB51280A36E61C6F58000013F51C7FCD91DFFF177FCA2011C6D18E7A36E6CEF01C7A36E6CEF0387A36E6CEF0707A26E6C170EA36E6C171CA36E6C1738A36E6C1770A26E6D16E0A36F6CED01C0A36F6CED0380A36F6CED0700A26F6C150EA36F6C5DA36F6C5DA36F6C5DA26F6D5CA3706C495AA3706C495AA3706C49C7FCA2706C130EA3706C5BA3706C5BA3706C5BA3706D5AA294387FC1C0A394383FE380A3DD1FF7C8FCA3EF0FFEA2013E6F5AA2137F715A2601FFC04F7E000701F896383FFF80B66C6D48023FB61280A3715A696278E17A>77 D<4AB47E020F13F8023F13FE9139FF007F80D903FCEB07E0D907F0EB01F0D91FE0EB007849488049488049C87E48485D4915FF00034B138048485CA2485AA2485AA2003F6F130049EC007C94C7FC127FA35B12FFAD127F7FA4123F7FA2001FEE01C07F000F16036D168012076C6C15076D160000015E6C6C151E6D6C5C6D6C5C6D6C5CD90FF8495AD903FCEB07C0903A00FF803F8091263FFFFEC7FC020F13F80201138032417CBF3A>99 D<EC03FE91381FFFE091B512F8903901FE03FE903A07F0007F8049486D7ED93FC06D7E49C76C7E496E7E49140348488148481401000782491400000F8283485A1880123F49153FA2007F17C0A35BA212FF90B8FCA30180CAFCA9127F7FA3123FA27F121FEF01C06C7E17036C6C1680A26C6C15070001EE0F006D150E6C6C151E6D6C5C6D6C5C6D6C5CD907F0EB03E0D903FC495A902700FF803FC7FC91383FFFFC020F13F00201138032417CBF3A>101 D<133C13FF487F487FA66C5B6C90C7FC133C90C8FCB3A2EB03C0EA07FF127FA41201EA007FA2133FB3B3AC497E497EB612E0A41B5F7DDE23>105 D<EB03C0EA07FFB5FCA41201EA007FA2133FB3B3B3B3AD497E497EB612F0A41C647DE323>108D<D903C0EB7FE0D807FF903803FFFCB5010F13FFDB3F0013C00378EB1FE04B6D7E0001D9C1C06D7E27007FC3808002C7C71203D93FCE81170114DC14D802F86E7E5CA35CA35CB3B3496C4A7F496C4A7FB6D8F003B612C0A4423F7DBE49>110 D<EDFF80020F13F8023F13FE9139FF007F80D903FCEB1FE0D907F0EB07F0D90FC0EB01F8D93F80EB00FE49C8127F017E81496F7E48486F7E00038349150700078348486F7EA2001F83491501A2003F83A348486F7EA400FF1880AC007F1800A26D5DA2003F5FA36C6C4B5AA36C6C4B5A00075FA26C6C4B5A6C6C4B5AA26C6C4B5A017F4BC7FC6D6C14FE6D6C495AD90FF0EB07F8D903FCEB1FE0D900FFEB7F806EB5C8FC020F13F8020113C039417CBF42>I<9039078003F8D807FFEB0FFFB5013F13C092387C0FE0913881F01F9238E03FF00001EB838039007F8700148FEB3F8E029CEB1FE0EE0FC00298EB030002B890C7FCA214B014F0A25CA55CB3B0497EEBFFF8B612FCA42C3F7CBE33>114 D<9139FFE00180010FEBFC03017FEBFF073A01FF001FCFD803F8EB03EFD807E0EB01FF48487F4848147F48C8123F003E151F007E150F127CA200FC1507A316037EA27E7F6C7E6D91C7FC13F8EA3FFE381FFFF06CEBFF806C14F86C14FF6C15C06C6C14F0011F80010714FED9007F7F02031480DA003F13C01503030013E0167F00E0ED1FF0160F17F86C15071603A36C1501A37EA26C16F016037E17E06D14076DEC0FC06D1580D8FDF0141FD8F8F8EC7F00013E14FC3AF01FC00FF80107B512E0D8E001148027C0003FF8C7FC2D417DBF34>I<1438A71478A414F8A31301A31303A21307130F131FA2137F13FF1203000F90B6FCB8FCA3260007F8C8FCB3AE17E0AE6D6CEB01C0A316036D6C148016076D6C14006E6C5A91383FC01E91381FF07C6EB45A020313E09138007F802B597FD733>I<D903C0150FD807FFED1FFFB50203B5FCA40001ED0007D8007F1501A2013F81B3B25FA35FA35F011F15066E140E5F130F6E4A7F01075D6D6C494813E0D901FE4948EBFFC0903A00FFC01F8091393FFFFE00020F13F8020001C0EC800042407DBE49>I E endTeXDict begin1 0 bop 1373 289 a Fj(Multiuser)45 b(Detection)1656 530y Fi(Scott)33 b(Ric)m(k)-5 b(ard)1669 725 y(April)31b(2,)h(1999)515 1079 y Fh(Solution)45 b(to)h(Problem)f(4.44)17371303 y Fg(\021)1778 1315 y Ff(1)1839 1303 y Fe(=)19361237 y Fg(d)1979 1207 y Ff(2)1979 1259 y(1)p Fd(;)p Ff(min)p1936 1284 211 4 v 1992 1360 a Fg(A)2054 1331 y Ff(2)20541382 y(1)3273 1303 y Fe(\(1\))515 1506 y(W)-7 b(e)25b(are)f(in)n(terested)g(in)i(an)e(expression)g(for)gFg(d)1941 1476 y Ff(2)1941 1528 y(1)p Fd(;)p Ff(min)21331506 y Fe(in)h(the)g(t)n(w)n(o-user)e(async)n(hronous)g(case.)5151606 y(That)37 b(is,)j(w)n(e)e(w)n(an)n(t)e(to)i(\014nd)gFg(\017)1518 1618 y Ff(1)1593 1606 y Fe(and)f Fg(\017)17981618 y Ff(2)1873 1606 y Fe(that)h(corresp)r(ond)d(to)j(the)g(minim)n(um)g(energy)515 1705 y(signal,)1175 1778 y Fd(M)11501803 y Fc(X)1112 1981 y Fd(i)p Ff(=)p Fb(\000)p Fd(M)13211882 y Fg(A)1383 1894 y Ff(1)1421 1882 y Fg(\017)14551894 y Ff(1)1492 1882 y Fe([)p Fg(i)p Fe(])p Fg(s)16061894 y Ff(1)1643 1882 y Fe(\()p Fg(t)18 b Fa(\000)g Fg(iT)12b Fe(\))18 b(+)g Fg(A)2091 1894 y Ff(2)2128 1882 y Fg(\017)21621894 y Ff(2)2199 1882 y Fe([)p Fg(i)p Fe(])p Fg(s)23131894 y Ff(2)2350 1882 y Fe(\()p Fg(t)h Fa(\000)f Fg(iT)29b Fa(\000)18 b Fg(\034)9 b Fe(\))492 b(\(2\))515 2115y(Without)28 b(loss)f(of)g(generalit)n(y)-7 b(.)36 b(w)n(e)27b(will)h(assume)f Fg(\017)2109 2127 y Ff(1)2147 2115y Fe([0])22 b(=)h(1.)639 2214 y(Consider)i(the)h(case)f(where)gFg(\017)1571 2226 y Ff(2)1608 2214 y Fe([)p Fa(\000)pFe(1])d(=)h Fg(\017)1904 2226 y Ff(2)1942 2214 y Fe([0])f(=)h(0.)36b(In)26 b(this)g(case,)f(an)n(y)g(other)g(non-zero)5152314 y(comp)r(onen)n(t)k(of)g Fg(\017)1071 2326 y Ff(1)11382314 y Fe(or)g Fg(\017)1275 2326 y Ff(2)1342 2314 y Fe(\(b)r(esides)hFg(\017)1695 2326 y Ff(1)1732 2314 y Fe([0]\),)g(will)g(not)f(o)n(v)n(erlap)f(in)h(time)i(with)f(the)f(section)515 2414 y(of)c(the)h(signal)f(corresp)r(onding)e(to)i Fg(\017)1646 2426 y Ff(1)16832414 y Fe([0])h(and)f(th)n(us)g(will)h(just)g(add)f(to)h(the)g(total)f(energy)f(of)515 2513 y(the)30 b(signal.)41 b(F)-7 b(rom)29b(this,)h(it)g(is)f(clear)f(that)i(the)g(only)f(w)n(a)n(y)f(that)i(a)f(non-zero)e(comp)r(onen)n(t)515 2613 y(of)e Fg(\017)6412625 y Ff(1)704 2613 y Fe(or)g Fg(\017)838 2625 y Ff(2)9012613 y Fe(\(call)h(it)g Fg(\017)1199 2625 y Fd(i)12262613 y Fe([)p Fg(j)5 b Fe(]\))26 b(will)g(serv)n(e)f(to)h(reduce)f(the)h(o)n(v)n(erall)e(signal)h(energy)f(is)i(if)g(all)g(the)5152712 y(comp)r(onen)n(ts)32 b(b)r(et)n(w)n(een)i Fg(\017)13372724 y Fd(i)1365 2712 y Fe([)p Fg(j)5 b Fe(])33 b(and)gFg(\017)1684 2724 y Ff(1)1721 2712 y Fe([0])g(\(in)h(b)r(oth)gFg(\017)2212 2724 y Ff(1)2283 2712 y Fe(and)f Fg(\017)24842724 y Ff(2)2521 2712 y Fe(\))g(are)g(also)f(non-zero)f(and)5152812 y(some)c(cancellation)f(is)i(o)r(ccuring.)36 b(This)27b(can)h(b)r(e)g(summerized,)1224 2992 y Fg(\017)12583004 y Ff(1)1295 2992 y Fe([)p Fg(i)p Fe(])23 b Fa(6)pFe(=)g(0)k(only)g(if)111 b Fg(\017)1925 3004 y Ff(2)19622992 y Fe([)p Fg(i)18 b Fa(\000)g Fe(1])23 b Fa(6)p Fe(=)f(0)pFg(;)14 b(i)22 b(>)h Fe(0)p Fg(;)1224 3116 y(\017)12583128 y Ff(2)1295 3116 y Fe([)p Fg(i)p Fe(])g Fa(6)p Fe(=)g(0)k(only)g(if)183 b Fg(\017)1996 3128 y Ff(1)2033 3116 y Fe([)pFg(i)p Fe(])23 b Fa(6)p Fe(=)g(0)p Fg(;)14 b(i)22 b Fa(\025)hFe(0)p Fg(;)1224 3241 y(\017)1258 3253 y Ff(1)1295 3241y Fe([)p Fg(i)p Fe(])g Fa(6)p Fe(=)g(0)k(only)g(if)183b Fg(\017)1996 3253 y Ff(2)2033 3241 y Fe([)p Fg(i)pFe(])23 b Fa(6)p Fe(=)g(0)p Fg(;)14 b(i)22 b(<)h Fe(0)pFg(;)1224 3365 y(\017)1258 3377 y Ff(2)1295 3365 y Fe([)pFg(i)p Fe(])g Fa(6)p Fe(=)g(0)k(only)g(if)118 b Fg(\017)19323377 y Ff(1)1969 3365 y Fe([)p Fg(i)18 b Fe(+)g(1])23b Fa(6)p Fe(=)f(0)p Fg(;)14 b(i)22 b(<)h Fe(0)p Fg(:)5153669 y Fe(Using)31 b(these)g(rules,)h(w)n(e)f(consider)g(some)f(candidate)h(w)n(a)n(v)n(eforms.)46 b(With)33 b Fg(\017)29423681 y Ff(1)2980 3669 y Fe([0])c(=)g(1)i(the)515 3769y(only)f(non-zero)f(comp)r(onen)n(t,)i(the)g(error)e(signal)h(energy)g(is)g Fg(A)2500 3739 y Ff(2)2500 3790 y(1)2538 3769 yFe(.)46 b(Adding)31 b(one)f(of)h Fg(\017)3190 3781 yFf(2)3227 3769 y Fe([)p Fa(\000)p Fe(1])515 3869 y(or)eFg(\017)653 3881 y Ff(2)690 3869 y Fe([0])h(\(and)h(selecting)e(the)i(minim)n(um)g(energy)e(c)n(hoice)h(for)g(eac)n(h\),)g(the)h(signal)e(energy)515 3968 y(w)n(ould)22 b(b)r(e)i Fg(A)923 3938y Ff(2)923 3989 y(1)970 3968 y Fe(+)10 b Fg(A)1107 3938y Ff(2)1107 3989 y(2)1153 3968 y Fa(\000)g Fe(2)p Fg(A)13323980 y Ff(1)1368 3968 y Fg(A)1430 3980 y Ff(2)1468 3968y Fa(j)p Fg(\032)1534 3980 y Ff(21)1604 3968 y Fa(j)23b Fe(or)g Fg(A)1810 3938 y Ff(2)1810 3989 y(1)1857 3968y Fe(+)10 b Fg(A)1994 3938 y Ff(2)1994 3989 y(2)20403968 y Fa(\000)g Fe(2)p Fg(A)2219 3980 y Ff(1)2255 3968y Fg(A)2317 3980 y Ff(2)2354 3968 y Fa(j)p Fg(\032)24203980 y Ff(12)2491 3968 y Fa(j)p Fe(,)24 b(resp)r(ectiv)n(ely)-7b(.)34 b(Similarly)-7 b(,)515 4068 y(with)34 b(all)g(three)g(of)gFg(\017)1186 4080 y Ff(1)1223 4068 y Fe([0],)i Fg(\017)14044080 y Ff(2)1441 4068 y Fe([)p Fa(\000)p Fe(1],)f(and)fFg(\017)1854 4080 y Ff(2)1891 4068 y Fe([0])g(non-zero,)g(the)h(signal)e(energy)g(w)n(ould)h(b)r(e)515 4168 y(\(for)23 b(the)h(appropriate)e(c)n(hoices)h(of)g Fg(\017)1653 4180 y Ff(1)1690 4168y Fe([0],)h Fg(\017)1859 4180 y Ff(2)1896 4168 y Fe([)pFa(\000)p Fe(1],)g(and)g Fg(\017)2287 4180 y Ff(2)23254168 y Fe([0]\),)g Fg(A)2554 4137 y Ff(2)2554 4188 y(1)26024168 y Fe(+)11 b(2)p Fg(A)2782 4137 y Ff(2)2782 4188y(2)2829 4168 y Fa(\000)g Fe(2)p Fg(A)3009 4180 y Ff(1)30454168 y Fg(A)3107 4180 y Ff(2)3144 4168 y Fa(j)p Fg(\032)32104180 y Ff(12)3281 4168 y Fa(j)g(\000)515 4267 y Fe(2)pFg(A)619 4279 y Ff(1)656 4267 y Fg(A)718 4279 y Ff(2)7554267 y Fa(j)p Fg(\032)821 4279 y Ff(12)892 4267 y Fa(j)21b Fe(Note)g(that)h(the)g(sections)e(of)h(the)h(signal)e(corresp)r(onding)g(to)h Fg(\017)2855 4279 y Ff(1)2892 4267 y Fe([0])g(and)gFg(\017)3190 4279 y Ff(2)3227 4267 y Fe([)p Fa(\000)pFe(1])515 4367 y(are)31 b(non-o)n(v)n(erlapping)e(in)j(time.)51b(Selecting)32 b(the)h(minim)n(um)f(energy)f(signal)g(from)h(these)5154466 y(four)27 b(p)r(ossibilities,)g(w)n(e)h(see)f(that,)9154646 y Fg(d)958 4612 y Ff(2)958 4667 y(1)p Fd(;)p Ff(min)11484646 y Fa(\024)22 b Fg(A)1297 4612 y Ff(2)1297 4667 y(1)13534646 y Fa(\000)c Fe(\(2)p Fg(A)1572 4658 y Ff(1)16104646 y Fg(A)1672 4658 y Ff(2)1709 4646 y Fa(j)p Fg(\032)17754658 y Ff(12)1846 4646 y Fa(j)g(\000)g Fg(A)2032 4612y Ff(2)2032 4667 y(2)2070 4646 y Fe(\))2102 4612 y Ff(+)21764646 y Fa(\000)g Fe(\(2)p Fg(A)2395 4658 y Ff(1)24324646 y Fg(A)2494 4658 y Ff(2)2531 4646 y Fa(j)p Fg(\032)25974658 y Ff(21)2668 4646 y Fa(j)g(\000)g Fg(A)2854 4612y Ff(2)2854 4667 y(2)2892 4646 y Fe(\))2924 4612 y Ff(+)32734646 y Fe(\(3\))515 4826 y(No)n(w)40 b(w)n(e)g(sho)n(w)f(this)i(b)r(ound)g(is)f(tigh)n(t.)75 b(Consider)40 b(adding)g(non-zero)eFg(\017)j Fe(comp)r(onen)n(ts)515 4925 y(on)32 b(the)h(righ)n(t)f(of)gFg(\017)1122 4937 y Ff(2)1159 4925 y Fe([0].)52 b(W)-7b(e)32 b(w)n(ould)g(only)h(ha)n(v)n(e)e Fg(\017)21344937 y Ff(1)2171 4925 y Fe([1])h(non-zero)f(if)i Fg(\017)27484937 y Ff(2)2785 4925 y Fe([0])f(w)n(as)g(non-zero)5155025 y(\(from)25 b(b)r(efore\),)g(th)n(us)h(the)f(energy)f(of)h(the)g(new)h(section)e(of)h(the)h(signal)e(w)n(ould)g(con)n(tribute)5155125 y Fg(A)577 5095 y Ff(2)577 5145 y(1)635 5125 y Fa(\000)cFe(2)p Fg(A)824 5137 y Ff(1)861 5125 y Fg(A)923 5137y Ff(2)960 5125 y Fa(j)p Fg(\032)1026 5137 y Ff(21)10965125 y Fa(j)p Fe(.)46 b(W)-7 b(e)31 b(w)n(ould)f(only)g(w)n(an)n(t)g(to)g(do)g(this)h(if)g Fg(A)2498 5137 y Ff(1)2564 5125y Fg(<)c Fe(2)p Fg(A)2760 5137 y Ff(2)2797 5125 y Fa(j)pFg(\032)2863 5137 y Ff(21)2933 5125 y Fa(j)p Fe(,)32b(but)f(if)g(this)515 5224 y(is)26 b(the)g(case,)g(w)n(e)g(w)n(ould)g(not)g(ha)n(v)n(e)f Fg(\017)1668 5236 y Ff(2)1705 5224y Fe([0])h(non-zero.)35 b(This)26 b(argumen)n(t)f(hold)h(regardless)e(of)515 5324 y(the)h(n)n(um)n(b)r(er)g(of)h(comp)r(onen)n(ts)e(w)n(e)h(wish)h(to)f(add,)g(and)g(th)n(us)h(the)f(b)r(ound)h(is)f(tigh)n(t)h(and)f(the)515 5424 y(optim)n(um)j(asymptotic)f(e\016ciency)g(is,)9975673 y Fg(\021)1038 5685 y Ff(1)1099 5673 y Fe(=)c(1)18b Fa(\000)1340 5617 y Fg(A)1402 5629 y Ff(2)p 1340 5654100 4 v 1340 5730 a Fg(A)1402 5742 y Ff(1)1463 5531 yFc(")1511 5556 y(\022)1572 5673 y Fe(2)p Fa(j)p Fg(\032)16805685 y Ff(12)1750 5673 y Fa(j)h(\000)1885 5617 y Fg(A)19475629 y Ff(2)p 1885 5654 V 1885 5730 a Fg(A)1947 5742y Ff(1)1994 5556 y Fc(\023)2055 5574 y Ff(+)2129 5673y Fe(+)2212 5556 y Fc(\022)2273 5673 y Fe(2)p Fa(j)pFg(\032)2381 5685 y Ff(21)2451 5673 y Fa(j)f(\000)25855617 y Fg(A)2647 5629 y Ff(2)p 2585 5654 V 2585 5730a Fg(A)2647 5742 y Ff(1)2695 5556 y Fc(\023)2756 5574y Ff(+)2811 5531 y Fc(#)2873 5673 y Fg(:)377 b Fe(\(4\))19266106 y(1)p eop enduserdict /end-hook known{end-hook}if

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -