📄 5.22.kishore.ps
字号:
C0FC07C0FE0FC07E3FE03FFBF80FE1F815127F9117>97 D<FF0000FF00001F00001F00001F0000
1F00001F00001F00001F00001F00001F00001F3FC01FFFF01FE1F81F80FC1F007C1F007E1F007E
1F007E1F007E1F007E1F007E1F007E1F007E1F00FC1F80FC1FE1F81CFFF0183FC0171D7F9C1B>
I<03FC000FFF003F0F803E07C07E03C07C03E0FC03E0FFFFE0FFFFE0FC0000FC0000FC00007C00
007E00603F00E01FC3C00FFF8003FE0013127F9116>101 D<FF0000FF00001F00001F00001F00
001F00001F00001F00001F00001F00001F00001F1FE01F7FF01FF1F81FC0F81F80F81F00F81F00
F81F00F81F00F81F00F81F00F81F00F81F00F81F00F81F00F81F00F8FFE7FFFFE7FF181D7F9C1B
>104 D<1E003F007F007F007F003F001E0000000000000000000000FF00FF001F001F001F001F
001F001F001F001F001F001F001F001F001F001F00FFE0FFE00B1E7F9D0E>I<FF00FF001F001F
001F001F001F001F001F001F001F001F001F001F001F001F001F001F001F001F001F001F001F00
1F001F001F001F00FFE0FFE00B1D7F9C0E>108 D<FF1FE0FF7FF01FF1F81FC0F81F80F81F00F8
1F00F81F00F81F00F81F00F81F00F81F00F81F00F81F00F81F00F81F00F8FFE7FFFFE7FF18127F
911B>110 D<01FC000FFF801F07C03E03E07C01F07C01F0FC01F8FC01F8FC01F8FC01F8FC01F8
FC01F87C01F07C01F03E03E01F07C00FFF8001FC0015127F9118>I<FE3E00FEFF801EEF801FCF
801F8F801F87001F00001F00001F00001F00001F00001F00001F00001F00001F00001F0000FFF0
00FFF00011127F9114>114 D<1FF87FF87078E018E018F000FF80FFF07FF83FF80FFC007CC03C
E01CE01CF878FFF8CFE00E127E9113>I<030003000300070007000F000F003F00FFFCFFFC1F00
1F001F001F001F001F001F001F001F001F0C1F0C1F0C1F0C1F9C0FF803F00E1A7F9913>I<FF07
F8FF07F81F00F81F00F81F00F81F00F81F00F81F00F81F00F81F00F81F00F81F00F81F00F81F01
F81F01F81F87F80FFFFF03FCFF18127F911B>I<FFC1FCFFC1FC1F00601F80E00F80C00FC0C007
C18007C18003E30003E30001F60001F60001FE0000FC0000FC0000780000780000300000300000
6000706000F8E000C0C000E380007F00003E0000161A7F9119>121 D E
end
%%EndProlog
%%BeginSetup
%%Feature: *Resolution 300
TeXDict begin @letter
%%EndSetup
%%Page: 1 1
bop 262 307 a Fg(Solutio)o(n)17 b(to)j(5.22)h(b)o(y)f(Shalinee)e(Kishore)h
(4/9/99)40 b Ff(W)m(e)18 b(b)q(egin)g(b)o(y)f(expressing)262
357 y(the)d(signal)f Fe(s)470 363 y Fd(2)489 357 y Ff(\()p
Fe(t)p Ff(\))i(so)f(that)g(it)g(has)g(unit)g(energy)m(.)19
b(T)m(o)13 b(do)h(this,)f(let)i(us)f(b)q(egin)g(b)o(y)g(denoting)262
407 y(the)g(v)n(alue)f(of)h Fe(s)507 413 y Fd(2)526 407 y Ff(\()p
Fe(t)p Ff(\))g(at)f Fe(t)f Ff(=)g(0)h(and)h Fe(t)e Ff(=)f Fe(T)20
b Ff(as)14 b Fe(a)p Ff(.)k(Therefore,)d Fe(a)f Ff(m)o(ust)f(b)q(e)h(suc)o(h)h
(that)704 529 y(1)41 b(=)840 472 y Fc(Z)882 483 y Fb(T)863
567 y Fd(0)915 529 y Fe(s)934 512 y Fd(2)934 539 y(2)953 529
y Ff(\()p Fe(t)p Ff(\))7 b Fe(dt)597 b Ff(\(1\))766 645 y(=)849
617 y Fe(a)871 602 y Fd(2)p 845 636 49 2 v 845 674 a Fe(T)875
662 y Fd(2)906 587 y Fc(\022)941 617 y Fe(T)971 602 y Fd(3)p
941 636 V 955 674 a Ff(3)1004 645 y Fa(\000)1051 617 y Fe(T)1081
602 y Fd(3)p 1051 636 V 1065 674 a Ff(2)1113 645 y(+)1160 617
y Fe(T)1190 602 y Fd(3)p 1160 636 V 1174 674 a Ff(4)1214 587
y Fc(\023)1641 645 y Ff(\(2\))766 763 y(=)845 735 y Fe(a)867
720 y Fd(2)886 735 y Fe(T)p 845 754 71 2 v 870 792 a Ff(3)1641
763 y(\(3\))262 889 y(Therefore,)14 b Fe(a)e Ff(=)539 841 y
Fc(q)p 580 841 35 2 v 589 872 a Fd(3)p 585 879 25 2 v 585 903
a Fb(T)614 889 y Ff(.)18 b(No)o(w,)13 b(w)o(e)h(compute)g Fe(\032)1001
895 y Fd(12)1036 889 y Ff(\()p Fe(\034)5 b Ff(\).)683 1025
y Fe(\032)704 1031 y Fd(12)739 1025 y Ff(\()p Fe(\034)g Ff(\))42
b(=)910 969 y Fc(Z)951 979 y Fb(T)933 1063 y(\034)985 1025
y Fe(s)1004 1031 y Fd(1)1023 1025 y Ff(\()p Fe(t)p Ff(\))p
Fe(s)1089 1031 y Fd(2)1108 1025 y Ff(\()p Fe(t)9 b Fa(\000)h
Fe(\034)5 b Ff(\))i Fe(dt)368 b Ff(\(4\))836 1146 y(=)915 1083
y Fa(p)p 949 1083 21 2 v 949 1118 a Ff(3)p 915 1136 56 2 v
918 1174 a Fe(T)948 1162 y Fd(2)975 1146 y Fe(\034)5 b Ff(\()p
Fe(\034)14 b Fa(\000)c Fe(T)c Ff(\))507 b(\(5\))836 1238 y(=)910
1202 y Fa(p)p 945 1202 21 2 v 36 x Ff(3)974 1210 y Fe(\034)p
970 1229 31 2 v 970 1267 a(T)1012 1192 y Fc(\020)1046 1210
y Fe(\034)p 1042 1229 V 1042 1267 a(T)1086 1238 y Fa(\000)10
b Ff(1)1149 1192 y Fc(\021)1641 1238 y Ff(\(6\))262 1344 y(The)h(ratio)g
Fe(\034)5 b(=T)17 b Ff(represen)o(ts)d(the)e(o\013set.)18 b(Similary)m(,)8
b(w)o(e)k(compute)e Fe(\032)1329 1350 y Fd(21)1365 1344 y Ff(\()p
Fe(\034)5 b Ff(\).)17 b(The)12 b(result)g(in-)262 1401 y(dicates)g(that)g
Fe(\032)507 1407 y Fd(21)543 1401 y Ff(\()p Fe(\034)5 b Ff(\))12
b(=)g Fa(\000)p Fe(\032)707 1407 y Fd(12)742 1401 y Ff(\()p
Fe(\034)5 b Ff(\).)18 b(W)m(e)12 b(no)o(w)f(m)o(ust)g(determine)h
Fe(\036)1299 1407 y Fd(2)1318 1401 y Ff(\()p Fe(\034)5 b Ff(\))11
b(=)h(1)6 b Fa(\000)1493 1368 y Fc(R)1520 1378 y Fb(T)1512
1416 y(\034)1553 1401 y Fe(s)1572 1386 y Fd(2)1572 1412 y(2)1591
1401 y Ff(\()p Fe(t)p Ff(\))h Fe(dt)p Ff(.)625 1528 y Fe(\036)650
1534 y Fd(2)669 1528 y Ff(\()p Fe(\034)e Ff(\))41 b(=)h(1)9
b Fa(\000)911 1471 y Fc(Z)952 1482 y Fb(T)934 1566 y(\034)985
1528 y Fe(s)1004 1511 y Fd(2)1004 1538 y(2)1023 1528 y Ff(\()p
Fe(t)p Ff(\))e Fe(dt)527 b Ff(\(7\))765 1628 y(=)857 1600 y
Fe(\034)p 844 1619 49 2 v 844 1657 a(T)874 1645 y Fd(3)905
1595 y Fc(\000)924 1628 y Ff(4)p Fe(\034)968 1611 y Fd(2)995
1628 y Fa(\000)10 b Ff(6)p Fe(T)c(\034)14 b Ff(+)9 b(3)p Fe(T)1212
1611 y Fd(2)1231 1595 y Fc(\001)1641 1628 y Ff(\(8\))765 1729
y(=)42 b(4)867 1683 y Fc(\020)900 1701 y Fe(\034)p 897 1720
31 2 v 897 1758 a(T)932 1683 y Fc(\021)957 1692 y Fd(3)984
1729 y Fa(\000)10 b Ff(6)1054 1683 y Fc(\020)1087 1701 y Fe(\034)p
1083 1720 V 1083 1758 a(T)1118 1683 y Fc(\021)1143 1692 y Fd(2)1171
1729 y Ff(+)f(3)1240 1683 y Fc(\020)1273 1701 y Fe(\034)p 1270
1720 V 1270 1758 a(T)1305 1683 y Fc(\021)1641 1729 y Ff(\(9\))262
1832 y(No)o(w)j(from)g(the)h(de\014nitions)g(of)g(the)h(e\016ciencies)g(of)f
(the)g(one-shot)h(decorrelator)g(and)f(the)262 1882 y(async)o(hronous)h
(decorrelator,)h(w)o(e)f(note)g(that)426 1998 y Fe(\021)448
1981 y Fd(1)p Fb(s)447 2008 y Fd(1)524 1998 y Ff(=)42 b(1)9
b Fa(\000)703 1970 y Fe(\032)724 1955 y Fd(2)724 1980 y(12)p
674 1988 115 2 v 674 2026 a Ff(1)g Fa(\000)h Fe(\036)771 2032
y Fd(2)803 1998 y Fa(\000)850 1970 y Fe(\032)871 1955 y Fd(2)871
1980 y(21)p 850 1988 57 2 v 856 2026 a Fe(\036)881 2032 y Fd(2)923
1998 y Ff(=)i(1)d(+)1110 1970 y Fe(\032)1131 1955 y Fd(2)1131
1980 y(12)p 1043 1988 191 2 v 1043 2026 a Fe(\036)1068 2032
y Fd(2)1086 2026 y Ff(\()p Fe(\036)1127 2032 y Fd(2)1155 2026
y Fa(\000)h Ff(1\))1620 1998 y(\(10\))441 2107 y Fe(\021)463
2090 y Fb(d)462 2117 y Fd(1)524 2107 y Ff(=)598 2070 y Fc(p)p
639 2070 645 2 v 639 2107 a Ff(\(1)f Fa(\000)h Ff(\()p Fe(\032)764
2113 y Fd(12)809 2107 y Ff(+)f Fe(\032)871 2113 y Fd(21)907
2107 y Ff(\))923 2095 y Fd(2)942 2107 y Ff(\))e(\(1)i Fa(\000)g
Ff(\()p Fe(\032)1089 2113 y Fd(12)1134 2107 y Fa(\000)h Fe(\032)1197
2113 y Fd(21)1233 2107 y Ff(\))1249 2095 y Fd(2)1267 2107 y
Ff(\))i(=)1339 2057 y Fc(q)p 1380 2057 149 2 v 1380 2107 a
Ff(1)d Fa(\000)h Ff(4)p Fe(\032)1494 2093 y Fd(2)1494 2118
y(12)1620 2107 y Ff(\(11\))262 2204 y(W)m(e)17 b(no)o(w)g(plot)g(the)i(t)o(w)
o(o)e(e\016ciencies,)j(for)d(o\013sets)i(ranging)e(from)f(0)i(to)f(1.)30
b(The)18 b(result)262 2254 y(indicates)f(that)g(the)h(async)o(hronous)g
(decorrelator)h(is)e(uniformly)d(sup)q(erior)k(to)g(the)f(one)262
2304 y(shot,)c(as)h(exp)q(ected.)967 2574 y(1)p eop
%%Page: 2 2
bop 262 1003 a
13090045 11188078 4999413 13222133 35916840 39469056 startTexFig
262 1003 a
%%BeginDocument: m55.ps
/MathWorks 160 dict begin
/bdef {bind def} bind def
/ldef {load def} bind def
/xdef {exch def} bdef
/xstore {exch store} bdef
/c /clip ldef
/cc /concat ldef
/cp /closepath ldef
/gr /grestore ldef
/gs /gsave ldef
/mt /moveto ldef
/np /newpath ldef
/cm /currentmatrix ldef
/sm /setmatrix ldef
/rc {rectclip} bdef
/rf {rectfill} bdef
/rm /rmoveto ldef
/rl /rlineto ldef
/s /show ldef
/sc {setcmykcolor} bdef
/sr /setrgbcolor ldef
/sg /setgray ldef
/w /setlinewidth ldef
/j /setlinejoin ldef
/cap /setlinecap ldef
/pgsv () def
/bpage {/pgsv save def} bdef
/epage {pgsv restore} bdef
/bplot /gsave ldef
/eplot {stroke grestore} bdef
/portraitMode 0 def
/landscapeMode 1 def
/dpi2point 0 def
/FontSize 0 def
/FMS {
/FontSize xstore %save size off stack
findfont
[FontSize 0 0 FontSize neg 0 0]
makefont
setfont
}bdef
/reencode {
exch dup where
{pop load} {pop StandardEncoding} ifelse
exch
dup 3 1 roll
findfont dup length dict begin
{ 1 index /FID ne {def}{pop pop} ifelse } forall
/Encoding exch def
currentdict
end
definefont pop
} bdef
/isroman {
findfont /CharStrings get
/Agrave known
} bdef
/FMSR {
3 1 roll 1 index
dup isroman
{reencode} {pop pop} ifelse
exch FMS
} bdef
/csm {
1 dpi2point div -1 dpi2point div scale
neg translate
landscapeMode eq {90 rotate} if
} bdef
/SO { [] 0 setdash } bdef
/DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
/DA { [6 dpi2point mul] 0 setdash } bdef
/DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4 dpi2point mul] 0 setdash } bdef
/L {
lineto
stroke
} bdef
/MP {
3 1 roll moveto
1 sub {rlineto} repeat
} bdef
/AP {
{rlineto} repeat
} bdef
/PP {
closepath eofill
} bdef
/DP {
closepath stroke
} bdef
/MR {
4 -2 roll moveto
dup 0 exch rlineto
exch 0 rlineto
neg 0 exch rlineto
closepath
} bdef
/FR {
MR stroke
} bdef
/PR {
MR fill
} bdef
/L1i {
{ currentfile picstr readhexstring pop } image
} bdef
/tMatrix matrix def
/MakeOval {
newpath
tMatrix currentmatrix pop
translate scale
0 0 1 0 360 arc
tMatrix setmatrix
} bdef
/FO {
MakeOval
stroke
} bdef
/PO {
MakeOval
fill
} bdef
/PD {
currentlinecap 1 setlinecap 3 1 roll 2 copy moveto lineto stroke setlinecap
} bdef
/FA {
newpath
tMatrix currentmatrix pop
translate scale
0 0 1 5 -2 roll arc
tMatrix setmatrix
stroke
} bdef
/PA {
newpath
tMatrix currentmatrix pop
translate 0 0 moveto scale
0 0 1 5 -2 roll arc
closepath
tMatrix setmatrix
fill
} bdef
/FAn {
newpath
tMatrix currentmatrix pop
translate scale
0 0 1 5 -2 roll arcn
tMatrix setmatrix
stroke
} bdef
/PAn {
newpath
tMatrix currentmatrix pop
translate 0 0 moveto scale
0 0 1 5 -2 roll arcn
closepath
tMatrix setmatrix
fill
} bdef
/MRR {
/vradius xdef
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -