📄 5.12.kishore.ps
字号:
>I<FF3FCFE0FF3FCFE03C0F07801C0F03001C1F03000E1B06000E1B86000E1B86000E318E0007
31CC000731CC000760CC0003E0F80003E0F80003E0F80001C0700001C0700001C070001B127F91
1E>I<7F8FF07F8FF00F0F80070F00038E0001DC0001D80000F00000700000780000F80001DC00
038E00030E000707001F0780FF8FF8FF8FF81512809116>I<FF0FE0FF0FE01C07801C07000E06
000E06000E0600070C00070C00071C0003980003980003F80001F00001F00000E00000E00000E0
0000C00000C00000C000F18000F18000C700007E00003C0000131A7F9116>I<7FFC7FFC783C70
7860F061E061E063C00780078C0F0C1E0C1E1C3C187818F078FFF8FFF80E127F9112>I
E /Fh 26 122 df<7CFEFEFEFEFE7C07077D860D>46 D<00038000038000078000078000070000
0F00000F00001E00001E00001C00003C00003C0000380000780000780000F00000F00000E00001
E00001E00001C00003C00003C0000380000780000780000F00000F00000E00001E00001E00001C
00003C00003C0000780000780000700000F00000F00000E00000E0000011297D9E18>I<006000
01E0000FE000FFE000F3E00003E00003E00003E00003E00003E00003E00003E00003E00003E000
03E00003E00003E00003E00003E00003E00003E00003E00003E00003E00003E0007FFF807FFF80
111B7D9A18>49 D<07F8003FFF00787F80F81FC0FC0FC0FC0FE0FC0FE0FC07E07807E0000FE000
0FE0000FC0001F80003F00003E00007C0000F00001E00003C0600780600F00601C00E03FFFC07F
FFC0FFFFC0FFFFC0FFFFC0131B7E9A18>I<000380000780000F80001F80001F80003F80007F80
00EF8001CF80038F80070F80060F800C0F801C0F80380F80700F80E00F80FFFFF8FFFFF8000F80
000F80000F80000F80000F80000F8001FFF801FFF8151B7F9A18>52 D<1C03801FFF801FFF801F
FF001FFC001FF8001FC0001800001800001800001BFC001FFF001E1F801C0FC01807C00007E000
07E00007E07807E0F807E0F807E0F807E0F80FC0700FC07C3F803FFE0007F800131B7E9A18>I<
07F8001FFE003F1F007E0F807C07C0FC07C0FC07C0FC07E0FC07E0FC07E0FC07E0FC07E0FC0FE0
7C0FE03E1FE03FFFE00FF7E00087E00007C00007C07C07C07C0F807C0F807C1F00787E003FFC00
0FE000131B7E9A18>57 D<FFFFFF00FFFFFF000FC01F000FC007000FC003000FC003800FC00380
0FC181800FC181800FC181800FC180000FC380000FFF80000FFF80000FC380000FC180000FC180
000FC180600FC180600FC000E00FC000C00FC000C00FC001C00FC001C00FC003C00FC00F80FFFF
FF80FFFFFF801B1C7E9B1F>69 D<FFFFFFFF07E007E007E007E007E007E007E007E007E007E007
E007E007E007E007E007E007E007E007E007E007E007E007E007E0FFFFFFFF101C7F9B12>73
D<FFFC07FFFFFC07FF0FC000E00FC003C00FC007800FC00F000FC01E000FC03C000FC070000FC0
E0000FC3C0000FC7C0000FCFE0000FDFF0000FFFF0000FF3F8000FE1FC000FC1FC000FC0FE000F
C07F000FC03F000FC03F800FC01FC00FC00FE00FC00FE00FC007F0FFFC3FFFFFFC3FFF201C7E9B
25>75 D<FFFFF00000FFFFFE00000FC03F00000FC01F80000FC00FC0000FC00FE0000FC00FE000
0FC00FE0000FC00FE0000FC00FE0000FC00FC0000FC01F80000FC03F00000FFFFE00000FFFF800
000FC0FC00000FC07E00000FC03E00000FC03F00000FC03F00000FC03F00000FC03F80000FC03F
80000FC03F80000FC03FC1800FC03FE380FFFC1FFF00FFFC07FE00211C7E9B24>82
D<07F8601FFFE03E0FE07803E07001E0F000E0F00060F80060F80000FE0000FFF0007FFE007FFF
803FFFC01FFFE007FFE0007FF00007F00001F00001F0C000F0C000F0E000F0E001E0F001E0FE07
C0FFFF80C3FE00141C7D9B1B>I<0FFC003FFF003E1F803E0FC03E07C01C07C00007C003FFC01F
FFC07F87C07F07C0FE07C0FC07C0FC07C0FE0FC07E3FE03FFBF80FE1F815127F9117>97
D<FF0000FF00001F00001F00001F00001F00001F00001F00001F00001F00001F00001F3FC01FFF
F01FE1F81F80FC1F007C1F007E1F007E1F007E1F007E1F007E1F007E1F007E1F007E1F00FC1F80
FC1FE1F81CFFF0183FC0171D7F9C1B>I<03FC000FFF003F0F803E07C07E03C07C03E0FC03E0FF
FFE0FFFFE0FC0000FC0000FC00007C00007E00603F00E01FC3C00FFF8003FE0013127F9116>
101 D<FF0000FF00001F00001F00001F00001F00001F00001F00001F00001F00001F00001F1FE0
1F7FF01FF1F81FC0F81F80F81F00F81F00F81F00F81F00F81F00F81F00F81F00F81F00F81F00F8
1F00F81F00F8FFE7FFFFE7FF181D7F9C1B>104 D<1E003F007F007F007F003F001E0000000000
000000000000FF00FF001F001F001F001F001F001F001F001F001F001F001F001F001F001F00FF
E0FFE00B1E7F9D0E>I<FF00FF001F001F001F001F001F001F001F001F001F001F001F001F001F
001F001F001F001F001F001F001F001F001F001F001F001F00FFE0FFE00B1D7F9C0E>108
D<FF1FE0FF7FF01FF1F81FC0F81F80F81F00F81F00F81F00F81F00F81F00F81F00F81F00F81F00
F81F00F81F00F81F00F8FFE7FFFFE7FF18127F911B>110 D<01FC000FFF801F07C03E03E07C01
F07C01F0FC01F8FC01F8FC01F8FC01F8FC01F8FC01F87C01F07C01F03E03E01F07C00FFF8001FC
0015127F9118>I<FE3E00FEFF801EEF801FCF801F8F801F87001F00001F00001F00001F00001F
00001F00001F00001F00001F00001F0000FFF000FFF00011127F9114>114
D<1FF87FF87078E018E018F000FF80FFF07FF83FF80FFC007CC03CE01CE01CF878FFF8CFE00E12
7E9113>I<030003000300070007000F000F003F00FFFCFFFC1F001F001F001F001F001F001F00
1F001F001F0C1F0C1F0C1F0C1F9C0FF803F00E1A7F9913>I<FF07F8FF07F81F00F81F00F81F00
F81F00F81F00F81F00F81F00F81F00F81F00F81F00F81F00F81F01F81F01F81F87F80FFFFF03FC
FF18127F911B>I<FFC7FCFFC7FC1F81800F838007C70003EE0001FC0001F80000F800007C0000
FE0001DF00039F00070F800607C00C03E0FF07FCFF07FC16127F9119>120
D<FFC1FCFFC1FC1F00601F80E00F80C00FC0C007C18007C18003E30003E30001F60001F60001FE
0000FC0000FC00007800007800003000003000006000706000F8E000C0C000E380007F00003E00
00161A7F9119>I E end
%%EndProlog
%%BeginSetup
%%Feature: *Resolution 300
TeXDict begin @letter
%%EndSetup
%%Page: 1 1
bop 262 307 a Fh(Solutio)o(n)9 b(to)i(5.12)h(b)o(y)g(Shalinee)d(Kishore)i
(4/9/99)40 b Fg(\(a\))11 b(Let)g(us)g(de\014ne)g(the)g(matrix)262
357 y Fh(S)i Fg(as)816 430 y Fh(S)e Fg(=)911 378 y Ff(1)898
390 y Fe(X)899 479 y Fd(j)r Fc(=0)958 430 y Fg(\()p Fh(I)e
Fb(\000)h Fa(\013)p Fh(R)p Fg(\))1122 413 y Fd(j)1641 430 y
Fg(\(1\))262 546 y(No)o(w)j(observ)o(e)520 659 y Fh(S)c Fb(\000)g
Fg(\()p Fh(I)g Fb(\000)h Fa(\013)p Fh(R)p Fg(\))p Fh(S)41 b
Fg(=)916 607 y Ff(1)902 619 y Fe(X)904 708 y Fd(j)r Fc(=0)962
659 y Fg(\()p Fh(I)10 b Fb(\000)f Fa(\013)p Fh(R)p Fg(\))1126
641 y Fd(j)1153 659 y Fb(\000)1208 607 y Ff(1)1194 619 y Fe(X)1196
708 y Fd(j)r Fc(=1)1254 659 y Fg(\()p Fh(I)h Fb(\000)f Fa(\013)p
Fh(R)p Fg(\))1418 641 y Fd(j)1641 659 y Fg(\(2\))829 770 y(=)41
b(\()p Fh(I)10 b Fb(\000)f Fa(\013)p Fh(R)p Fg(\))1066 753
y Fc(0)1641 770 y Fg(\(3\))829 832 y(=)41 b Fh(I)721 b Fg(\(4\))262
922 y(W)m(e)13 b(can)h(then)h(write)765 1012 y Fh(I)42 b Fg(=)g
Fh(S)8 b Fb(\000)i Fg(\()p Fh(I)f Fb(\000)h Fa(\013)p Fh(R)p
Fg(\))p Fh(S)474 b Fg(\(5\))825 1074 y(=)42 b(\()p Fh(I)9 b
Fb(\000)h Fg(\()p Fh(I)f Fb(\000)h Fa(\013)p Fh(R)p Fg(\)\))p
Fh(S)450 b Fg(\(6\))825 1137 y(=)42 b Fa(\013)p Fh(RS)652 b
Fg(\(7\))262 1227 y(Th)o(us,)718 1308 y Fh(R)754 1290 y Ff(\000)p
Fc(1)810 1308 y Fg(=)12 b Fa(\013)p Fh(S)f Fg(=)g Fa(\013)1009
1256 y Ff(1)996 1268 y Fe(X)997 1357 y Fd(j)r Fc(=0)1056 1308
y Fg(\()p Fh(I)e Fb(\000)h Fa(\013)p Fh(R)p Fg(\))1220 1290
y Fd(j)1641 1308 y Fg(\(8\))262 1423 y(Note,)18 b(ho)o(w)o(ev)o(er,)h(that)f
(there)h(are)f(v)n(alues)f(of)h Fa(\013)f Fg(for)g(whic)o(h)h(the)h(series)g
(simply)c(cannot)262 1473 y(appro)o(ximate)8 b Fh(R)534 1458
y Ff(\000)p Fc(1)579 1473 y Fg(.)17 b(One)11 b(example)f(is)g(if)g(w)o(e)h
(select)h Fa(\013)g Fg(=)f(1)p Fa(=\025)p Fg(,)g(where)h Fa(\025)f
Fg(is)g(an)f(eigen)o(v)n(alue)262 1523 y(of)j Fh(R)p Fg(.)18
b(W)m(e)c(kno)o(w)f(that)h Fh(Rx)e Fg(=)g Fa(\025)p Fh(x)j
Fg(\(where)g Fh(x)f Fg(is)g(an)g(eigen)o(v)o(ector)h(of)e Fh(R)p
Fg(\).)18 b(Therefore,)d(w)o(e)262 1573 y(see)h(that)g Fh(I)p
Fa(\025)10 b Fb(\000)h Fh(R)j Fg(=)g(0)h(\(since)i Fh(x)d Fb(6)p
Fg(=)h(0\).)22 b(So)15 b(if)g(w)o(e)h(select)g Fa(\013)e Fg(=)h(1)p
Fa(=\025)p Fg(,)g(then)h Fh(I)10 b Fb(\000)h Fa(\013)p Fh(R)i
Fg(=)i(0)262 1623 y(and)d(th)o(us)h(\()p Fh(I)6 b Fb(\000)g
Fa(\013)p Fh(R)p Fg(\))588 1608 y Fd(j)606 1623 y Fg(,)12 b(for)g(all)f
Fa(j)r Fg(.)18 b(Th)o(us,)12 b(b)o(y)h(selecting)g Fa(\013)p
Fg('s)f(suc)o(h)h(that,)f(0)f Fa(<)h(\013)f(<)h Fg(1)p Fa(=\025)1619
1629 y Fc(max)1682 1623 y Fg(,)262 1673 y(w)o(e)i(a)o(v)o(oid)e(suc)o(h)j
(degenerate)g(case)g(and)f(the)h(series)g(ab)q(o)o(v)o(e)e(holds.)324
1722 y(\(b\))i(If)f(w)o(e)h(appro)o(ximate)e Fh(R)775 1707
y Ff(\000)p Fc(1)834 1722 y Fg(b)o(y)i(neglecting)g(all)e(but)i(the)g
(\014rst)h(t)o(w)o(o)e(terms)h(in)f(\(8\),)262 1772 y(the)g(error)h(matrix,)c
Fh(E)p Fg(,)j(is)767 1862 y Fh(E)42 b Fg(=)g Fh(S)8 b Fb(\000)i
Fh(R)1027 1845 y Ff(\000)p Fc(1)1641 1862 y Fg(\(9\))840 1958
y(=)42 b Fa(\013)961 1906 y Ff(1)947 1918 y Fe(X)948 2007 y
Fd(j)r Fc(=2)1007 1958 y Fg(\()p Fh(I)10 b Fb(\000)f Fa(\013)p
Fh(R)p Fg(\))1171 1941 y Fd(j)1620 1958 y Fg(\(10\))262 2095
y(where)15 b Fh(R)418 2080 y Ff(\000)p Fc(1)473 2095 y Fg(=)d
Fa(\013)p Fh(I)d Fg(+)h Fa(\013)p Fg(\()p Fh(I)f Fb(\000)h
Fa(\013)p Fh(R)p Fg(\).)17 b(W)m(e)d(can)g(rewrite)h(this)f(as)g(the)g(follo)
o(wing:)596 2185 y Fh(R)632 2168 y Ff(\000)p Fc(1)718 2185
y Fg(=)42 b Fh(S)9 b Fb(\000)g Fh(E)720 b Fg(\(11\))718 2280
y(=)42 b Fa(\013)839 2228 y Ff(1)826 2241 y Fe(X)827 2329 y
Fd(j)r Fc(=0)886 2280 y Fg(\()p Fh(I)9 b Fb(\000)h Fa(\013)p
Fh(R)p Fg(\))1050 2263 y Fd(j)1076 2280 y Fb(\000)1131 2228
y Ff(1)1118 2241 y Fe(X)1119 2329 y Fd(j)r Fc(=2)1178 2280
y Fg(\()p Fh(I)f Fb(\000)h Fa(\013)p Fh(R)p Fg(\))1342 2263
y Fd(j)1620 2280 y Fg(\(12\))718 2387 y(=)42 b(\()p Fa(\013)p
Fg(\()p Fh(I)9 b Fb(\000)h Fa(\013)p Fh(R)p Fg(\))f(+)g Fa(\013)p
Fh(I)p Fg(\))510 b(\(13\))718 2449 y(=)42 b(2)p Fa(\013)p Fh(I)9
b Fb(\000)g Fa(\013)935 2432 y Fc(2)954 2449 y Fh(R)630 b Fg(\(14\))967
2574 y(1)p eop
%%Page: 2 2
bop 262 307 a Fg(Minimizing)8 b(the)j(trace)h(of)e(the)i(error)g(matrix)d(is)
i(equiv)n(alen)o(t)f(to)h(maxim)o(izing)d(the)j(trace)h(of)262
357 y(the)g(appro)o(ximate)e Fh(R)605 342 y Ff(\000)p Fc(1)661
357 y Fg(matrix.)15 b(The)d(diagonal)e(elemen)o(ts)h(of)h(2)p
Fa(\013)p Fh(I)f Fg(are)h(simply)d(2)p Fa(\013)p Fg(.)17 b(The)262
407 y(diagonal)11 b(elemen)o(ts)i(of)g Fa(\013)670 392 y Fc(2)688
407 y Fh(R)g Fg(are)h Fa(\013)833 392 y Fc(2)864 407 y Fg(\(since)g
Fa(\032)1002 413 y Fd(ii)1040 407 y Fg(=)e(1\).)17 b(Th)o(us)d(the)g
(diagonal)d(elemen)o(ts)i(of)262 457 y(the)d(error)h(matrix,)e
Fh(R)607 442 y Ff(\000)p Fc(1)651 457 y Fg(,)i(are)f(then)h(2)p
Fa(\013)r Fb(\000)r Fa(\013)941 442 y Fc(2)959 457 y Fg(.)17
b(The)11 b(trace)g(therefore)g(is)f(simply)f Fa(n)p Fg(\(2)p
Fa(\013)r Fb(\000)r Fa(\013)1660 442 y Fc(2)1678 457 y Fg(\))262
506 y(where)17 b Fa(n)g Fg(is)g(the)g(dimensionalit)o(y)d(of)i(the)i(matrix)d
Fh(R)p Fg(.)26 b(T)m(o)16 b(maxim)o(ize)f(trace\()p Fh(R)1556
491 y Ff(\000)p Fc(1)1601 506 y Fg(\),)i(w)o(e)262 556 y(\014nd)d(the)g
Fa(\013)g Fg(that)g(solv)o(es)789 631 y Fa(d)p 769 649 56 2
v 776 687 a(d\013)829 659 y Fg(\(2)p Fa(n\013)9 b Fb(\000)h
Fa(n\013)1021 642 y Fc(2)1039 659 y Fg(\))41 b(=)h(0)429 b(\(15\))886
735 y(2)p Fa(n)9 b Fb(\000)h Fg(2)p Fa(n\013)40 b Fg(=)i(0)429
b(\(16\))1028 797 y Fa(\013)41 b Fg(=)h(1)429 b(\(17\))262
889 y(Note)13 b(that)f(since)i(2)p Fa(n\013)7 b Fb(\000)g Fa(n\013)721
874 y Fc(2)751 889 y Fg(is)12 b(a)g(conca)o(v)o(e)h(function)g(\(a)f(conca)o
(v)o(e)h(parab)q(ola\),)f(the)h(solu-)262 938 y(tion)g Fa(\013)e
Fg(=)h(1)i(do)q(es)g(in)g(fact)g(maxim)o(ize)d(the)k(trace)g(of)e
Fh(R)1132 923 y Ff(\000)p Fc(1)1176 938 y Fg(.)18 b(This)c(in)g(turn)g(minim)
o(izes)e(the)262 988 y(trace)k(of)e Fh(E)p Fg(.)23 b(\(c\))15
b(W)m(e)g(can)h(then)f(use)h(the)g(appro)o(ximate)d(decorrelator,)k(whic)o(h)
e(appro)o(xi-)262 1038 y(mates)10 b Fh(R)415 1023 y Ff(\000)p
Fc(1)471 1038 y Fg(=)i(2)p Fh(I)5 b Fb(\000)g Fh(R)p Fg(,)11
b(for)g(not)g(only)g(those)h(correlation)g(matricies)e(whic)o(h)i(are)g
(strongly)262 1088 y(diagonal)e(but)i(for)g(those)g(matricies)f(whose)i
(maxim)n(um)8 b(eigen)o(v)n(alue)j(is)h(less)h(than)f(1.)17
b(This)262 1138 y(w)o(a)o(y)m(,)12 b(w)o(e)i(select)h Fa(\013)c
Fg(=)h(1)f Fa(<)h Fg(1)p Fa(=\025)752 1144 y Fc(max)829 1138
y Fg(and)i(appro)o(ximate)e(the)i Fh(R)1257 1123 y Ff(\000)p
Fc(1)1316 1138 y Fg(with)f(2)p Fh(I)c Fb(\000)h Fh(R)p Fg(.)967
2574 y(2)p eop
%%Trailer
end
userdict /end-hook known{end-hook}if
%%EOF
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -