⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 4.6.yingyao.ps

📁 是multiuser detection 这本书的习题解答, 很有用的书.
💻 PS
📖 第 1 页 / 共 2 页
字号:
81E18001E181E18000F181E30000F300F30000F300F30000FB00F700007E007E00007E007E00007E007E00003E007C00003C003C00003C003C00001C0038000018001800281C7F9B2B>87D<FFF00FFCFFF00FFC0FC003C007C0038003C0030003E0060001F0060000F00C0000F81C0000781800007C3800003C3000001E6000001F6000000FC000000FC00000078000000780000007800000078000000780000007800000078000000780000007800000078000007FF800007FF8001E1C809B1F>89 D<FEFEC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0FEFE07297C9E0C>91 D<FEFE06060606060606060606060606060606060606060606060606060606060606060606060606FEFE0729809E0C>93 D<06000F001F8039C070E0E07040200C077C9C15>I<1FE0003FF8003C3C003C1E00180E00000E00001E0007FE003FFE007E0E00F80E00F80E00F00E60F00E60F81E607C7E607FFFC01FC78013127F9115>97 D<FC0000FC00001C00001C00001C00001C00001C00001C00001C00001C00001C00001CFE001FFF801F87C01E03E01C01E01C00F01C00F01C00F01C00F01C00F01C00F01C00F01C01E01E01E01E03C01F87C01BFF8018FE00141D7F9C17>I<07F80FFC3E3C3C3C78187800F000F000F000F000F000F000780078063C0E3F1C0FF807F00F127F9112>I<001F80001F8000038000038000038000038000038000038000038000038000038007F3801FFF803E1F807C0780780380F80380F00380F00380F00380F00380F00380F00380F003807807807C0F803E1F801FFBF007E3F0141D7F9C17>I<07E01FF83E7C781C781EF01EFFFEFFFEF000F000F000F000780078063C0E3F1C0FF807F00F127F9112>I<00FC03FE079E071E0F1E0E000E000E000E000E000E00FFE0FFE00E000E000E000E000E000E000E000E000E000E000E000E000E000E007FE07FE00F1D809C0D>I<07E7C01FFFC03C3DC0781E00781E00781E00781E00781E00781E003C3C003FF80037E0007000007000007800003FFC003FFF007FFF807807C0F003C0E001C0E001C0F003C0F807C07C0F801FFE0007F800121B7F9115>I<FC0000FC00001C00001C00001C00001C00001C00001C00001C00001C00001C00001CFE001DFF001F8F801F07801E03801C03801C03801C03801C03801C03801C03801C03801C03801C03801C03801C0380FF9FF0FF9FF0141D7F9C17>I<3C007C007C007C003C00000000000000000000000000FC00FC001C001C001C001C001C001C001C001C001C001C001C001C001C001C00FF80FF80091D7F9C0C>I<01C003E003E003E001C00000000000000000000000000FE00FE000E000E000E000E000E000E000E000E000E000E000E000E000E000E000E000E000E000E000E0F0E0F1E0F3C0FF807E000B25839C0D>I<FC0000FC00001C00001C00001C00001C00001C00001C00001C00001C00001C00001C7FC01C7FC01C3E001C3C001C78001CF0001DE0001FE0001FF0001FF0001E78001C7C001C3C001C1E001C1E001C0F00FF9FE0FF9FE0131D7F9C16>I<FC00FC001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C001C00FF80FF80091D7F9C0C>I<FC7F07F000FDFF9FF8001F87F87C001F03F03C001E01E01C001C01C01C001C01C01C001C01C01C001C01C01C001C01C01C001C01C01C001C01C01C001C01C01C001C01C01C001C01C01C001C01C01C00FF8FF8FF80FF8FF8FF8021127F9124>I<FCFE00FDFF001F8F801F07801E03801C03801C03801C03801C03801C03801C03801C03801C03801C03801C03801C0380FF9FF0FF9FF014127F9117>I<03F0000FFC001E1E00380700780780700380F003C0F003C0F003C0F003C0F003C0F003C07003807807803807001E1E000FFC0003F00012127F9115>I<FCFE00FFFF801F87C01E03E01C01E01C01F01C00F01C00F01C00F01C00F01C00F01C00F01C01E01E01E01E03C01F8FC01FFF801CFE001C00001C00001C00001C00001C00001C0000FF8000FF8000141A7F9117>I<FDF0FFF81F781E781E301C001C001C001C001C001C001C001C001C001C001C00FFC0FFC00D127F9110>114D<1FB07FF0F0F0E070E030F030F8007FC07FE01FF000F8C078C038E038F078F8F0FFF0CFC00D127F9110>I<0C000C000C000C000C001C001C003C00FFE0FFE01C001C001C001C001C001C001C001C001C301C301C301C301C301E700FE007C00C1A7F9910>I<FC1F80FC1F801C03801C03801C03801C03801C03801C03801C03801C03801C03801C03801C03801C07801C0F801E1F800FFFF007F3F014127F9117>I<FF0FE0FF0FE01C07801C07000E06000E06000E0600070C00070C00071C0003980003980003F80001F00001F00000E00000E00000E00013127F9116>I<FF3FCFE0FF3FCFE03C0F07801C0F03001C1F03000E1B06000E1B86000E1B86000E318E000731CC000731CC000760CC0003E0F80003E0F80003E0F80001C0700001C0700001C070001B127F911E>I<7F8FF07F8FF00F0F80070F00038E0001DC0001D80000F00000700000780000F80001DC00038E00030E000707001F0780FF8FF8FF8FF81512809116>I<FF0FE0FF0FE01C07801C07000E06000E06000E0600070C00070C00071C0003980003980003F80001F00001F00000E00000E00000E00000C00000C00000C000F18000F18000C700007E00003C0000131A7F9116>I<7FFC7FFC783C707860F061E061E063C00780078C0F0C1E0C1E1C3C187818F078FFF8FFF80E127F9112>I E /Fj 10 118df<7CFEFEFEFEFE7C07077C8610>46 D<0000E00001E00003E00003E00007E0000FE0001FE0001FE00037E00077E000E7E001C7E00187E00307E00707E00E07E00C07E01807E03807E07007E0E007E0FFFFFEFFFFFE0007E00007E00007E00007E00007E00007E00007E000FFFE00FFFE17207E9F1C>52 D<003FC001FFE003F07007C0F80F81F81F01F83E01F83E01F87E00F07C00007C0000FC0800FCFFC0FDFFF0FF81F8FF00F8FE007CFE007CFE007EFC007EFC007EFC007EFC007E7C007E7C007E7E007E3E007C3E00FC1F01F80FC3F007FFC000FF0017207E9F1C>54 D<03FE0C0FFF9C1F03FC3E00FC7C007C78003CF8001CF8001CF8000CFC000CFE0000FF0000FFF0007FFF007FFFE03FFFF01FFFF80FFFFC03FFFE007FFE0003FF0000FF00007F00003FC0001FC0001FC0001FE0001FE0001EF0003EFC007CFF80F8E7FFF0C0FFC018227DA11F>83 D<1F003F803F803F803F803F801F000000000000000000000000000000FF80FF801F801F801F801F801F801F801F801F801F801F801F801F801F801F801F801F801F801F80FFF0FFF00C247FA30F>105 D<FF80FF801F801F801F801F801F801F801F801F801F801F801F801F801F801F801F801F801F801F801F801F801F801F801F801F801F801F801F801F801F801F801F80FFF0FFF00C237FA20F>108 D<FF87F000FF9FFC001FF8FC001FF07E001FE07E001FC07E001FC07E001F807E001F807E001F807E001F807E001F807E001F807E001F807E001F807E001F807E001F807E001F807E001F807E001F807E00FFF1FFC0FFF1FFC01A167E951F>110 D<00FE0007FFC00F83E01E00F03E00F87C007C7C007C7C007CFC007EFC007EFC007EFC007EFC007EFC007EFC007E7C007C7C007C3E00F81F01F00F83E007FFC000FE0017167E951C>I<00C00000C00000C00000C00001C00001C00003C00007C0000FC0001FC000FFFF00FFFF000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC0000FC1800FC1800FC1800FC1800FC1800FE38007E70003FF0000FC0011207F9F16>116 D<FF83FE00FF83FE001F807E001F807E001F807E001F807E001F807E001F807E001F807E001F807E001F807E001F807E001F807E001F807E001F807E001F807E001F80FE001F80FE001F81FE000FC3FE000FFF7FC003FC7FC01A167E951F>I E end%%EndProlog%%BeginSetup%%Feature: *Resolution 300TeXDict begin @letter%%EndSetup%%Page: 1 1bop 812 307 a Fj(Solution)21 b(to)d(4.6)866 357 y Fi(Yingw)o(ei)13b(Y)m(ao)262 457 y(4.6)f(\(a\))i(The)h(receiv)o(ed)g(signal)e(is)713584 y Fh(y)q Fi(\()p Fh(t)p Fi(\))g(=)853 532 y Fg(K)838 545y Ff(X)838 634 y Fg(k)q Fe(=1)905 584 y Fh(A)936 590 y Fg(k)957584 y Fh(b)975 590 y Fg(k)995 584 y Fh(s)1014 590 y Fg(k)1035584 y Fi(\()p Fh(t)p Fi(\))c(+)h Fh(\033)q(n)p Fi(\()p Fh(t)pFi(\))p Fh(;)262 708 y Fi(so)j(giv)o(en)h(the)g(transmitted)g(bits)gFd(b)p Fi(,)f(the)h(output)g(of)f(matc)o(hed)h(\014lter)g(1)f(is)757833 y Fh(y)777 839 y Fe(1)808 833 y Fi(=)867 782 y Fg(K)852794 y Ff(X)851 883 y Fg(k)q Fe(=1)919 833 y Fh(A)950 839 yFg(k)970 833 y Fh(b)988 839 y Fg(k)1009 833 y Fh(\032)1030839 y Fg(k)q Fe(1)1076 833 y Fi(+)d Fh(\033)q(n)1168 839 yFe(1)1186 833 y Fh(;)262 958 y Fi(where)i Fh(n)404 964 y Fe(1)433958 y Fi(is)f(a)g(zero-mean,)g(unit-v)n(ariance)f(Gaussian)h(random)e(v)n(ariable.)16 b(Giv)o(en)11 b Fh(b)1591 964 y Fe(1)1620 958y Fi(=)h Fh(b)p Fi(,)480 1083 y Fh(P)6 b Fi(\()p Fh(y)549 1089y Fe(1)568 1083 y Fc(j)p Fh(b)598 1089 y Fe(1)627 1083 y Fi(=)12b Fh(b)p Fi(\))g(=)f Fh(C)h Fc(\001)832 1043 y Ff(X)849 1141y Fd(b)828 1165 y Fb(b)844 1171 y(1)860 1165 y(=b)909 1083y Fi(exp)p Fc(f\000)1051 1055 y Fi(1)p 1030 1073 64 2 v 10301111 a(2)p Fh(\033)1075 1117 y Fe(2)1098 1083 y Fi(\()p Fh(y)11341089 y Fe(1)1162 1083 y Fc(\000)1219 1031 y Fg(K)1204 1043y Ff(X)1204 1133 y Fg(k)q Fe(=1)1271 1083 y Fh(A)1302 1089y Fg(k)1323 1083 y Fh(b)1341 1089 y Fg(k)1361 1083 y Fh(\032)13821089 y Fg(k)q Fe(1)1419 1083 y Fi(\))1435 1066 y Fe(2)14541083 y Fc(g)262 1252 y Fi(Since)17 b Fh(P)6 b Fi(\()p Fh(b)4401258 y Fe(1)476 1252 y Fi(=)17 b(1\))g(=)h Fh(P)6 b Fi(\()pFh(b)696 1258 y Fe(1)731 1252 y Fi(=)17 b Fc(\000)p Fi(1\))h(=)9211235 y Fe(1)p 921 1242 17 2 v 921 1266 a(2)943 1252 y Fi(,)f(the)h(minim)n(um)o(-error-probabili)o(t)o(y)c(decision)262 1302 y(rule)g(is)f(just)h(the)h(maxim)n(um)o(-l)o(ik)o(eli)o(ho)q(o)q(d)c(decision)j(rule,)g(that)f(is)7121377 y(^)713 1388 y Fh(b)731 1394 y Fe(1)761 1388 y Fi(=)f(arg)39b(max)870 1417 y Fg(b)p Fa(2f)p Fe(1)p Fg(;)p Fa(\000)p Fe(1)pFa(g)1017 1388 y Fh(P)6 b Fi(\()p Fh(y)1086 1394 y Fe(1)11051388 y Fc(j)p Fh(b)1135 1394 y Fe(1)1164 1388 y Fi(=)12 b Fh(b)pFi(\))262 1499 y(If)h(the)i(op)q(en-ey)o(e)f(condition)g(is)f(satis\014ed)i(then,)720 1624 y Fh(sg)q(n)p Fi(\()p Fh(b)819 1630 y Fe(1)8381624 y Fi(\))d(=)g Fh(sg)q(n)p Fi(\()1007 1572 y Fg(K)991 1584y Ff(X)991 1674 y Fg(k)q Fe(=1)1059 1624 y Fh(A)1090 1630 yFg(k)1111 1624 y Fh(b)1129 1630 y Fg(k)1149 1624 y Fh(\032)11701630 y Fg(k)q Fe(1)1207 1624 y Fi(\))p Fh(;)262 1748 y Fi(so)h(the)i(minim)n(um)o(-error-probabil)o(it)o(y)c(decision)j(rule)g(is)862 1824y(^)863 1835 y Fh(b)881 1841 y Fe(1)911 1835 y Fi(=)e Fh(sg)q(n)pFi(\()p Fh(y)1056 1841 y Fe(1)1076 1835 y Fi(\))262 1922 y(\(b\))i(Giv)o(en)fFd(b)p Fi(,)665 1972 y Fh(y)685 1978 y Fe(1)716 1972 y Fi(=)fFh(A)791 1978 y Fe(1)810 1972 y Fi(\()p Fh(b)844 1978 y Fe(1)8711972 y Fc(\000)e Fi(0)p Fh(:)p Fi(8)p Fh(b)985 1978 y Fe(2)10121972 y Fi(+)f(0)p Fh(:)p Fi(3)p Fh(b)1125 1978 y Fe(3)11431972 y Fi(\))g(+)g Fh(\033)q(n)1259 1978 y Fe(1)1278 1972 yFh(;)262 2044 y Fi(If)16 b(there)i(is)f(no)g(noise,)g(then)h(when)fFh(b)867 2050 y Fe(1)902 2044 y Fi(=)g(1,)g Fh(y)1021 2050y Fe(1)1057 2044 y Fi(can)g(only)f(tak)o(e)h(four)g(p)q(ossible)g(v)n(alues:)262 2093 y(0)p Fh(:)p Fi(5)p Fh(;)7 b Fc(\000)p Fi(0)p Fh(:)pFi(1)p Fh(;)g Fi(2)p Fh(:)o Fi(1)p Fh(;)f Fi(1)p Fh(:)p Fi(5)o(;)19b(similarly)d(when)k Fh(b)902 2099 y Fe(1)941 2093 y Fi(=)hFc(\000)p Fi(1,)f Fh(y)1099 2099 y Fe(1)1138 2093 y Fi(can)f(tak)o(e)h(the)g(follo)o(wing)c(v)n(alues:)262 2143 y Fc(\000)p Fi(0)p Fh(:)pFi(5)p Fh(;)7 b Fi(0)p Fh(:)p Fi(1)p Fh(;)g Fc(\000)p Fi(2)pFh(:)o Fi(1)p Fh(;)g Fc(\000)p Fi(1)p Fh(:)o Fi(5.)16 b(When)7842126 y Fg(A)809 2130 y Fb(1)p 784 2133 42 2 v 794 2158 a Fg(\033)8422143 y Fc(!)c(1)p Fi(,)i(the)h(minim)n(um)o(-)o(error)e(-probabilit)o(y)f(decision)262 2193 y(region)h(for)h Fh(b)468 2199 y Fe(1)4982193 y Fi(=)d(1)j(is)755 2243 y(\012)785 2249 y Fe(1)815 2243y Fi(=)e([)p Fc(\000)p Fi(0)p Fh(:)p Fi(3)p Fh(;)7 b Fi(0])gFc([)i Fi([0)p Fh(:)p Fi(3)p Fh(;)e Fc(1)p Fi(])p Fh(;)2622315 y Fi(and)13 b(the)i(decision)f(region)f(for)h Fh(b)7772321 y Fe(1)807 2315 y Fi(=)e Fc(\000)p Fi(1)i(is)901 2402y(\012)931 2408 y Fe(2)961 2402 y Fi(=)e(\012)1035 2385 y Fg(c)10352412 y Fe(1)967 2574 y Fi(1)p eop%%Trailerenduserdict /end-hook known{end-hook}if%%EOF

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -