📄 6.15.rickard.ps
字号:
6D147F003F1600A2001F157E6D14FE000F5D6D130100075D6C6C495A6C6C495A6C6C495A013E49C7FC90381FC0FE903807FFF89038007F802A2E7DAC31>111D<3901FC03FC00FF90380FFF8091383C07E091387001F83A07FDE000FE00010180137F01FFEC3F8091C7EA1FC04915E049140F17F0160717F8160317FCA3EE01FEABEE03FCA3EE07F8A217F0160F6D15E0EE1FC06D143F17806EEB7E00D9FDC05B9039FCF003F891383C0FE091381FFF80DA03FCC7FC91C9FCAE487EB512F8A32F3F7DAB36>I<3903F803F000FFEB1FFCEC3C3EEC707F0007EBE0FF3803F9C000015B13FBEC007E153C01FF13005BA45BB3A748B4FCB512FEA3202C7DAB26>114 D<1306A5130EA4131EA3133E137EA213FE12011207001FB512F0B6FCA2C648C7FCB3A4150CAA017E131C017F1318A26D133890381F8030ECC070903807E0E0903801FFC09038007F001E3E7EBC26>116 D E /Fn12 118 df<B912F018FF19E019F8C601FCC8EA7FFED93FF892380FFF80011F04017F9538007FF0F11FF8737EF103FE737E737F747E747E747E1A0F87747E1A0387747EA2741380A2F37FC0A21CE01B3FA21CF0A21B1F1CF8A31CFCA21B0FA41CFEAF1CFCA51B1F1CF8A4F33FF0A21CE0A21B7F1CC01BFF1C80A2501300A2505A505AA2505A505A505A505A1AFF4F5B4F90C7FCF107FCF11FF8F17FF0953801FFC0013F04075BD9FFFCDB7FFEC8FCBA12F819E096C9FC18F0576279E165>68 D<B500FC071FB51280A36E61C6F58000013F51C7FCD91DFFF177FCA2011C6D18E7A36E6CEF01C7A36E6CEF0387A36E6CEF0707A26E6C170EA36E6C171CA36E6C1738A36E6C1770A26E6D16E0A36F6CED01C0A36F6CED0380A36F6CED0700A26F6C150EA36F6C5DA36F6C5DA36F6C5DA26F6D5CA3706C495AA3706C495AA3706C49C7FCA2706C130EA3706C5BA3706C5BA3706C5BA3706D5AA294387FC1C0A394383FE380A3DD1FF7C8FCA3EF0FFEA2013E6F5AA2137F715A2601FFC04F7E000701F896383FFF80B66C6D48023FB61280A3715A696278E17A>77 D<4AB47E020F13F8023F13FE9139FF007F80D903FCEB07E0D907F0EB01F0D91FE0EB007849488049488049C87E48485D4915FF00034B138048485CA2485AA2485AA2003F6F130049EC007C94C7FC127FA35B12FFAD127F7FA4123F7FA2001FEE01C07F000F16036D168012076C6C15076D160000015E6C6C151E6D6C5C6D6C5C6D6C5CD90FF8495AD903FCEB07C0903A00FF803F8091263FFFFEC7FC020F13F80201138032417CBF3A>99 D<EC03FE91381FFFE091B512F8903901FE03FE903A07F0007F8049486D7ED93FC06D7E49C76C7E496E7E49140348488148481401000782491400000F8283485A1880123F49153FA2007F17C0A35BA212FF90B8FCA30180CAFCA9127F7FA3123FA27F121FEF01C06C7E17036C6C1680A26C6C15070001EE0F006D150E6C6C151E6D6C5C6D6C5C6D6C5CD907F0EB03E0D903FC495A902700FF803FC7FC91383FFFFC020F13F00201138032417CBF3A>101 D<133C13FF487F487FA66C5B6C90C7FC133C90C8FCB3A2EB03C0EA07FF127FA41201EA007FA2133FB3B3AC497E497EB612E0A41B5F7DDE23>105 D<EB03C0EA07FFB5FCA41201EA007FA2133FB3B3B3B3AD497E497EB612F0A41C647DE323>108D<D903C0EB7FE0D807FF903803FFFCB5010F13FFDB3F0013C00378EB1FE04B6D7E0001D9C1C06D7E27007FC3808002C7C71203D93FCE81170114DC14D802F86E7E5CA35CA35CB3B3496C4A7F496C4A7FB6D8F003B612C0A4423F7DBE49>110 D<EDFF80020F13F8023F13FE9139FF007F80D903FCEB1FE0D907F0EB07F0D90FC0EB01F8D93F80EB00FE49C8127F017E81496F7E48486F7E00038349150700078348486F7EA2001F83491501A2003F83A348486F7EA400FF1880AC007F1800A26D5DA2003F5FA36C6C4B5AA36C6C4B5A00075FA26C6C4B5A6C6C4B5AA26C6C4B5A017F4BC7FC6D6C14FE6D6C495AD90FF0EB07F8D903FCEB1FE0D900FFEB7F806EB5C8FC020F13F8020113C039417CBF42>I<9039078003F8D807FFEB0FFFB5013F13C092387C0FE0913881F01F9238E03FF00001EB838039007F8700148FEB3F8E029CEB1FE0EE0FC00298EB030002B890C7FCA214B014F0A25CA55CB3B0497EEBFFF8B612FCA42C3F7CBE33>114 D<9139FFE00180010FEBFC03017FEBFF073A01FF001FCFD803F8EB03EFD807E0EB01FF48487F4848147F48C8123F003E151F007E150F127CA200FC1507A316037EA27E7F6C7E6D91C7FC13F8EA3FFE381FFFF06CEBFF806C14F86C14FF6C15C06C6C14F0011F80010714FED9007F7F02031480DA003F13C01503030013E0167F00E0ED1FF0160F17F86C15071603A36C1501A37EA26C16F016037E17E06D14076DEC0FC06D1580D8FDF0141FD8F8F8EC7F00013E14FC3AF01FC00FF80107B512E0D8E001148027C0003FF8C7FC2D417DBF34>I<1438A71478A414F8A31301A31303A21307130F131FA2137F13FF1203000F90B6FCB8FCA3260007F8C8FCB3AE17E0AE6D6CEB01C0A316036D6C148016076D6C14006E6C5A91383FC01E91381FF07C6EB45A020313E09138007F802B597FD733>I<D903C0150FD807FFED1FFFB50203B5FCA40001ED0007D8007F1501A2013F81B3B25FA35FA35F011F15066E140E5F130F6E4A7F01075D6D6C494813E0D901FE4948EBFFC0903A00FFC01F8091393FFFFE00020F13F8020001C0EC800042407DBE49>I E endTeXDict begin1 0 bop 1373 126 a Fn(Multiuser)45 b(Detection)1656 358y Fm(Scott)33 b(Ric)m(k)-5 b(ard)1645 547 y(April)31b(16,)h(1999)515 895 y Fl(Solution)45 b(to)h(Problem)f(6.15)5151060 y Fk(The)33 b(Ca)n(yley-Hamilton)f(theorem)g(states)i(that)f(an)n(y)f(matrix)g(satis\014es)i(its)f(o)n(wn)g(c)n(harateristic)5151151 y(function.)1312 1313 y(\()p Fj(A)16 b Fi(\000)hFj(\025)1538 1321 y Fh(1)1573 1313 y Fj(I)6 b Fk(\)\()pFj(A)15 b Fi(\000)i Fj(\025)1868 1321 y Fh(2)1903 1313y Fj(I)6 b Fk(\))12 b Fi(\001)h(\001)g(\001)g Fk(\()pFj(A)k Fi(\000)f Fj(\025)2313 1321 y Fg(K)2372 1313 yFj(I)6 b Fk(\))20 b(=)h(0)515 1475 y(Equiv)l(alen)n(tly)-6b(,)24 b(w)n(e)j(can)e(write,)1065 1637 y Fj(A)1123 1601y Fg(K)1198 1637 y Fk(+)17 b Fj(\015)1319 1656 y Fh(1)13531637 y Fj(A)1411 1601 y Fg(K)s Ff(\000)p Fh(1)1565 1637y Fk(+)g Fj(\015)1686 1656 y Fh(2)1720 1637 y Fj(A)17781601 y Fg(K)s Ff(\000)p Fh(2)1932 1637 y Fk(+)g Fi(\001)c(\001)g(\001)18 b Fk(+)e Fj(\015)2236 1656 y Fg(K)s Ff(\000)p Fh(1)23731637 y Fj(A)h Fk(+)g Fj(\015)2569 1656 y Fg(K)2628 1637y Fj(I)26 b Fk(=)21 b(0)p Fj(;)515 1799 y Fk(where)26b Fj(\015)781 1818 y Fg(i)833 1799 y Fk(is)g(the)f(appropriately)h(signed)g(sum)f(of)h(all)h(p)r(ossible)g(groups)f(of)gFj(i)g Fk(eigen)n(v)l(alues,)1463 1975 y Fj(\015)15071994 y Fg(i)1555 1975 y Fk(=)21 b(\()p Fi(\000)p Fk(1\))17941939 y Fg(i)1903 1904 y Fe(X)1833 2063 y Fg(l)1853 2073y Fd(1)1885 2063 y Fg(<)p Ff(\001\001\001)p Fg(<l)20582074 y Fc(i)2097 1975 y Fj(\025)2142 1984 y Fg(l)21621994 y Fd(1)2211 1975 y Fi(\001)14 b(\001)f(\001)g Fj(\025)23591984 y Fg(l)2379 1995 y Fc(i)2409 1975 y Fj(:)515 2225y Fk(F)-6 b(or)24 b(non-singular)g Fj(A)p Fk(,)g(m)n(ultiplying)f(the)h(ab)r(o)n(v)n(e)g(equation)g(b)n(y)f Fj(A)2422 2193 yFf(\000)p Fh(1)2528 2225 y Fk(and)g(solving)i(yields)fFj(A)3204 2193 y Ff(\000)p Fh(1)3310 2225 y Fk(as)5152316 y(a)i(p)r(olynomial)g(in)f Fj(A)g Fk(of)i(degree)fFj(K)c Fi(\000)17 b Fk(1.)935 2506 y Fj(A)993 2470 yFf(\000)p Fh(1)1159 2506 y Fk(=)1313 2457 y Fi(\000)pFk(1)p 1311 2489 103 4 v 1311 2556 a Fj(\015)1355 2575y Fg(K)1424 2506 y Fj(A)1482 2470 y Fg(K)s Ff(\000)pFh(1)1636 2506 y Fi(\000)1734 2457 y Fj(\015)1778 2476y Fh(1)p 1722 2489 V 1722 2556 a Fj(\015)1766 2575 yFg(K)1835 2506 y Fj(A)1893 2470 y Fg(K)s Ff(\000)p Fh(2)20472506 y Fi(\000)2145 2457 y Fj(\015)2189 2476 y Fh(2)p2133 2489 V 2133 2556 a Fj(\015)2177 2575 y Fg(K)22462506 y Fj(A)2304 2470 y Fg(K)s Ff(\000)p Fh(3)2458 2506y Fi(\000)g(\001)c(\001)g(\001)k(\000)2728 2450 y Fj(\015)27722469 y Fg(K)s Ff(\000)p Fh(1)p 2728 2489 182 4 v 27672556 a Fj(\015)2811 2575 y Fg(K)2919 2506 y Fj(I)11592744 y Fk(=)1301 2651 y Fg(K)s Ff(\000)p Fh(1)1312 2673y Fe(X)1318 2831 y Fg(i)p Fh(=0)1447 2744 y Fj(\014)14902752 y Fg(i)1517 2744 y Fj(A)1575 2708 y Fg(i)1601 2744y Fj(;)515 2974 y Fk(where)26 b(\(de\014ning)f Fj(\015)11012993 y Fh(0)1157 2974 y Fk(=)c(1\),)26 b Fj(\014)13962982 y Fg(i)1444 2974 y Fk(=)21 b Fi(\000)p Fj(\015)16292993 y Fg(K)s Ff(\000)p Fh(1)p Ff(\000)p Fg(i)1836 2974y Fj(=\015)1918 2993 y Fg(K)1977 2974 y Fk(.)639 3065y(No)n(w,)27 b(w)n(e)f(solv)n(e)g(for)g([)p Fj(R)18 bFk(+)f Fj(\033)1475 3034 y Fh(2)1509 3065 y Fj(I)6 bFk(])1570 3034 y Ff(\000)p Fh(1)1653 3065 y Fk(,)11573299 y([)p Fj(R)18 b Fk(+)f Fj(\033)1378 3263 y Fh(2)14123299 y Fj(I)6 b Fk(])1473 3263 y Ff(\000)p Fh(1)16383299 y Fk(=)1781 3205 y Fg(K)s Ff(\000)p Fh(1)1792 3228y Fe(X)1798 3386 y Fg(i)p Fh(=0)1927 3299 y Fj(\014)19703307 y Fg(i)1997 3299 y Fk([)p Fj(R)18 b Fk(+)e Fj(\033)22173263 y Fh(2)2252 3299 y Fj(I)6 b Fk(])2313 3263 y Fg(i)16383563 y Fk(=)1781 3469 y Fg(K)s Ff(\000)p Fh(1)1792 3492y Fe(X)1798 3650 y Fg(i)p Fh(=0)1927 3563 y Fj(\014)19703571 y Fg(i)2054 3470 y(i)2009 3492 y Fe(X)2012 3650y Fg(j)s Fh(=0)2133 3435 y Fe( )2199 3515 y Fj(i)21943614 y(j)2230 3435 y Fe(!)2290 3563 y Fk(\()p Fj(\033)23673527 y Fh(2)2401 3563 y Fk(\))2431 3527 y Fg(i)p Ff(\000)pFg(j)2534 3563 y Fj(R)2593 3527 y Fg(j)1638 3837 y Fk(=)17813743 y Fg(K)s Ff(\000)p Fh(1)1792 3766 y Fe(X)1795 3923y Fg(j)s Fh(=0)1927 3709 y Fe(")1972 3743 y Fg(K)s Ff(\000)pFh(1)1983 3766 y Fe(X)1990 3923 y Fg(i)p Fh(=)p Fg(j)21173837 y Fj(\014)2160 3845 y Fg(i)2187 3709 y Fe( )22533789 y Fj(i)2248 3888 y(j)2284 3709 y Fe(!)2344 3837y Fk(\()p Fj(\033)2421 3801 y Fh(2)2455 3837 y Fk(\))24853801 y Fg(i)p Ff(\000)p Fg(j)2588 3709 y Fe(#)2646 3837y Fj(R)2705 3801 y Fg(j)1638 4111 y Fk(=)1781 4017 yFg(K)s Ff(\000)p Fh(1)1792 4040 y Fe(X)1795 4197 y Fg(j)sFh(=0)1927 4111 y Fj(\013)1976 4119 y Fg(j)2009 4111y Fj(R)2068 4075 y Fg(j)2100 4111 y Fj(:)515 4346 y Fk(Th)n(us,)9024575 y Fj(\013)951 4583 y Fg(j)1067 4575 y Fk(=)12094482 y Fg(K)s Ff(\000)p Fh(1)1220 4504 y Fe(X)1227 4662y Fg(i)p Fh(=)p Fg(j)1355 4575 y Fj(\014)1398 4583 yFg(i)1425 4448 y Fe( )1490 4527 y Fj(i)1485 4626 y(j)15214448 y Fe(!)1582 4575 y Fk(\()p Fj(\033)1659 4539 y Fh(2)16934575 y Fk(\))1723 4539 y Fg(i)p Ff(\000)p Fg(j)1067 4849y Fk(=)1209 4755 y Fg(K)s Ff(\000)p Fh(1)1220 4778 yFe(X)1227 4936 y Fg(i)p Fh(=)p Fg(j)1355 4849 y Fi(\000)pFj(\015)1459 4868 y Fg(K)s Ff(\000)p Fh(1)p Ff(\000)pFg(i)1666 4849 y Fj(=\015)1748 4868 y Fg(K)1807 4721y Fe( )1872 4801 y Fj(i)1868 4900 y(j)1903 4721 y Fe(!)19644849 y Fk(\()p Fj(\033)2041 4813 y Fh(2)2075 4849 y Fk(\))21054813 y Fg(i)p Ff(\000)p Fg(j)1067 5123 y Fk(=)1209 5029y Fg(K)s Ff(\000)p Fh(1)1220 5052 y Fe(X)1227 5209 yFg(i)p Fh(=)p Fg(j)1365 5052 y Fk(\()p Fi(\000)p Fk(1\))15235020 y Fg(i)1562 4996 y Fe(P)1643 5075 y Fg(l)1663 5085y Fd(1)1695 5075 y Fg(<)p Ff(\001\001\001)p Fg(<l)18685086 y Fc(K)s Fb(\000)p Fd(1)p Fb(\000)p Fc(i)2080 5052y Fj(\025)2124 5061 y Fg(l)2144 5071 y Fd(1)2194 5052y Fi(\001)13 b(\001)g(\001)g Fj(\025)2341 5061 y Fg(l)23615072 y Fc(K)s Fb(\000)p Fd(1)p Fb(\000)p Fc(i)p 13655106 1195 4 v 1783 5174 a Fk(\()p Fj(\025)1858 5182 yFh(1)1906 5174 y Fi(\001)g(\001)g(\001)g Fj(\025)20535182 y Fg(K)2111 5174 y Fk(\))2570 4995 y Fe( )2635 5075y Fj(i)2631 5174 y(j)2666 4995 y Fe(!)2727 5123 y Fk(\()pFj(\033)2804 5087 y Fh(2)2838 5123 y Fk(\))2868 5087y Fg(i)p Ff(\000)p Fg(j)2971 5123 y Fj(;)515 5370 y Fk(where)21b Fj(\025)777 5378 y Fg(i)824 5370 y Fk(are)g(the)g(eigen)n(v)l(alues)g(of)h Fj(R)8 b Fi(\000)f Fj(\033)1730 5338 y Fh(2)17645370 y Fj(I)f Fk(,)21 b(whic)n(h)g(can)g(b)r(e)g(mapp)r(ed)e(easily)j(to)f(the)f(eigen)n(v)l(alues)515 5461 y(of)26 b Fj(R)gFk(b)n(y)f(adding)h Fj(\033)1092 5430 y Fh(2)1126 5461y Fk(.)1926 5956 y Fa(1)p eop enduserdict /end-hook known{end-hook}if
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -