📄 test.ctx
字号:
\documentclass[11pt]{cctart}
%\documentclass{article}
%\documentstyle{carticle}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{latexsym}
\usepackage{eufrak}
\usepackage{eucal}
\usepackage{mathrsfs}
\usepackage{graphicx}
%\newtheorem{theorem}{Theorem}
\begin{document}
\title{\LARGE{\heiti 关于\LaTeX{} 的应用}
\footnote{
\scriptsize{
{\heiti 收稿日期:} 2006-02-30~~
{\heiti 基金项目:} 国家自然科学基金资助项目(10171062)}}}
\author{\normalsize{齐~~韬}
\footnote{
\scriptsize{
{\heiti 通信作者:} qitao@graduate.shu.edu.cn}}
\\
\scriptsize(上海大学~~理学院, 邮编~~200444)}
\date{}
\maketitle
\begin{center}
\it\scriptsize{
This article is dedicated to HUANG Y. and ZHOU B.B. for helpful discussion.
}
\end{center}
\begin{abstract}
\begin{center}
\scriptsize{
本文用一种全新的方法证明了\LaTeX{}真的很好学.[1]
}
\end{center}
\end{abstract}
\section{基本命令与符号字体}
\subsection{定理标准化}
\newtheorem{theorem}{定理}
\begin{theorem}
There exists an infinite complete distributive lattice $K$
with only the two trivial complete congruence relations.
\end{theorem}
\subsection{简单排版}
\subsubsection{控制行间距}\vskip 20pt
\subsubsection{文字强调}
\underline{下划线强调}
\emph{楷体字强调}
\emph{emphasizes text}
\subsubsection{文字对齐}
\begin{flushright}
文字段落右对齐
\end{flushright}
\begin{center}
居中对齐\\ 断行
\end{center}
\subsection{复杂排版}
\begin{flushright}
\begin{enumerate}
\item You can mix the list environments to your taste:
\begin{itemize}
\item But it might start to look silly.
\item[-] With a dash.
\end{itemize}
\item Therefore remember:
\begin{description}
\item[Stupid] things will not become smart because they are in a list.
\item[Smart] things, though, can be presented beautifully in a list.
\end{description}
\end{enumerate}
\end{flushright}
\subsection{符号}
\subsubsection{特殊保留字的输出}
$\verb+#+$~~~~~~~~$\sharp$
$\verb^@^$~~~~~~~~$@$
$\verb^$^$~~~~~~~~$\pounds$
\subsubsection{特殊字体的输出}
$
\mathbf{A}
\mathit{A}
\mathsf{A}
\mathrm{A}
\mathtt{A}
\mathnormal{A}
\mathbb{A}
\mathfrak{A}
\mathcal{A}
\boldsymbol{\alpha} $
\subsubsection{添加标准间隔}
$$\sum_{i=1}^{n} x_{i}^{2} \qquad \prod_{i=1}^{n} x_{i}^{2}$$
\vskip 20pt
\section{数学公式}
\subsection{公式描述}
$$a = b \qquad \mbox{by assumption}$$
\subsection{上下括号加标注}
$$\overbrace{a + b + \cdots + z}^{n}$$
$$\underbrace{a + b + \cdots + z}_{n}$$
\subsection{要用到宏包的命令}
$a \nmid b$
\subsection{简单矩阵}
$$
\mathbf{A} =
\begin{pmatrix}
a + b + c & uv
\\
a + b & u + v
\end{pmatrix}
\begin{pmatrix}
30 & 7
\\
3 & 17
\end{pmatrix}
$$
\[
\begin{vmatrix}
a + b + c & uv\\
a + b & c + d
\end{vmatrix}
= 7
\]
$$
\mathbf{X} =
\left(
\begin{array}{ccc}
x_{11} & x_{12} & \ldots \\
x_{21} & x_{22} & \ldots \\
\vdots & \vdots & \ddots
\end{array}
\right)
$$
\subsection{复杂矩阵}
\[
\mathbf{A} =
\begin{pmatrix}
\dfrac{\varphi \cdot X_{n, 1}}{\varphi_{1} \times \varepsilon_{1}}
& (x + \varepsilon_{2})^{2}
& \cdots
& (x + \varepsilon_{n - 1})^{n - 1}
& (x + \varepsilon_{n})^{n}
\\
\dfrac{\varphi \cdot X_{n, 1}}{\varphi_{2} \times \varepsilon_{1}}
& \dfrac{\varphi \cdot X_{n, 2}}{\varphi_{2} \times \varepsilon_{2}}
& \cdots
& (x + \varepsilon_{n - 1})^{n - 1}
& (x + \varepsilon_{n})^{n}
\\
\hdotsfor{5}
\\
\dfrac{\varphi \cdot X_{n, 1}}{\varphi_{n} \times \varepsilon_{1}}
& \dfrac{\varphi \cdot X_{n, 2}}{\varphi_{n} \times \varepsilon_{2}}
& \cdots
& \dfrac{\varphi \cdot X_{n, n - 1}}{\varphi_{n} \times \varepsilon_{n - 1}}
& \dfrac{\varphi\cdot X_{n, n}}{\varphi_{n} \times \varepsilon_{n}}
\end{pmatrix}
+ \mathbf{I}_{n}
\]
\subsection{连续几个公式的对齐}
\begin{align}
2u + 1 &= \binom{a}{b + c} \binom{\frac{n^{2} - 1}{2}}{n + 1} \\
a &\equiv v \pmod{\theta}
\end{align}
\subsection{长公式的分行}
\begin{align}
h(x)
&=
\int
\left(\frac{ f(x) + g(x) }{ 1+ f^{2}(x) } + \frac{ 1+ f(x)g(x) }{ \sqrt{1 - \sin x} }\right)
\, dx\\
&= \int
\frac{ 1 + f(x) }{ 1 + g(x) }
\, dx - 2 \tan^{-1}(x-2)
\notag
\end{align}
\subsection{分段函数}
\[
f(x)=
\begin{cases}
-x^{2}, &\text{if $x < 0$;}\\
\alpha + x, &\text{if $0 \leq x \leq 1$;}\\
x^{2}, &\text{otherwise.}
\end{cases}
\]
\subsection{插入表格}
%用一个l 产生左对齐的列,用一个r
%产生右对齐的列,用一个c 产生居中的列;用p{宽度值width} 产生相应宽
%度、包含自动断行文本的列;| 产生铅直表线。
%在tabular 环境中,用& 跳入下一列,用\\ 开始新的一行,用\hline
%插入水平表线。用\cline{j-i} 可添加部分表线,其中j 和i 分别表示表线
%的起始列和终止列的序号。
\begin{center}
\begin{tabular}{|r|l|}
\hline
7C0 & hexadecimal \\
3700 & octal \\
\cline{2-2}
11111000000 & binary \\
\hline
\hline
1984 & decimal \\
\hline
\end{tabular}
\end{center}
\subsection{equation与displaymath的区别}
\begin{equation}
\epsilon > 0
\end{equation}
\begin{displaymath}
\lim_{n \to \infty}
\sum_{k=1}^n \frac{1}{k^2}
= \frac{\pi^2}{6}
\end{displaymath}
\subsection{公式中的空格与文字}
\begin{equation}
\forall x \in \mathbf{R}:
\qquad x^{2} \geq 0
\end{equation}
\begin{equation}
x^{2} \geq 0\qquad
\textrm{for all }x\in\mathbf{R}
\end{equation}
\subsection{二项式}
\begin{displaymath}
{n \choose k}\qquad {x \atop y+2}
\end{displaymath}
\subsection{使积分漂亮的技巧}
%\! 命令生成负空格.
\newcommand{\ud}{\mathrm{d}}
$$
\int\!\!\!\int_{D} g(x,y)\, \ud x\, \ud y
$$
instead of
$$
\int\int_{D} g(x,y)\ud x \ud y
$$
\begin{displaymath}
\iint_{D} \, \ud x \, \ud y
\end{displaymath}
\begin{displaymath}
\mathop{\mathrm{corr}}(X,Y)=
\frac{\displaystyle
\sum_{i=1}^n(x_i-\overline x)(y_i-\overline y)}
{\displaystyle
\biggl[\sum_{i=1}^n(x_i-\overline x)^2
\sum_{i=1}^n(y_i-\overline y)^2
\biggr]^{1/2}}
\end{displaymath}
\begin{thebibliography}{20}
\bibitem{1}Simmons G J. Authentication theory/ coding theory [J]. {\it Lecture Notes in Comput. Sci}, 1985, {\bf 196}:411-432.
\bibitem{2}Simmons G J. The practice of authentication [J]. {\it Lecture Notes in Computer Science}, 1986, {\bf 219}:261-272.
\bibitem{3}Stinson D R. Some constructions and bounds for authentication codes [J]. {\it Journal of Cryptology}, 1988, {\bf 1}:37-51.
\bibitem{4}De Soete M. New bounds and constructions for authentication/secrecy codes with splitting [J]. {\it Journal of Cryptology},1991, {\bf
3}:173-186.
\bibitem{5}Stinson D R. Combinatorial characterizations of authentication codes [J]. {\it Designs, Codes and Cryptography}, 1992, {\bf 2}:175-187.
\bibitem{6}Rees R S, Stinson D R. Combinatorial characterizations of authentication codes II [J]. {\it Designs, Codes and Cryptography}, 1996, {\bf
7}:239-259.
\bibitem{7}Kurosawa K, Okada K, Saido H, Stinson D R. New combinatorial bounds for authentication codes and key predistibution schemes [J]. {\it
Designs, Codes and Cryptography}, 1998, {\bf 15}:87-100.
\end{thebibliography}
\end{document}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -