📄 转贴---卡尔曼滤波器 编程天地 怀化气象论坛 - powered by phpwind_net.htm
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0051)http://bbs.soft666.com/simple/index.php?t37249.html -->
<HTML><HEAD><TITLE>转贴---卡尔曼滤波器 编程天地 怀化气象论坛 - powered by phpwind.net</TITLE>
<META http-equiv=Content-Type content="text/html; charset=gbk">
<META content=phpwind,bbs,board,php,mysql,forums name=keywords><!--css-->
<STYLE type=text/css>BODY {
FONT-SIZE: 12px; BACKGROUND: #ffffff; MARGIN: 0px; COLOR: #000000; FONT-FAMILY: Verdana
}
IMG {
BORDER-RIGHT: 0px; BORDER-TOP: 0px; BORDER-LEFT: 0px; BORDER-BOTTOM: 0px
}
TD {
FONT-SIZE: 12px
}
TEXTAREA {
FONT-SIZE: 12px; FONT-FAMILY: Verdana; BACKGROUND-COLOR: #ffffff
}
INPUT {
FONT-SIZE: 12px; FONT-FAMILY: Verdana; BACKGROUND-COLOR: #ffffff
}
SELECT {
FONT-SIZE: 12px; FONT-FAMILY: Verdana; BACKGROUND-COLOR: #ffffff
}
DIV.quote {
BORDER-RIGHT: #e7e3e7 1px dashed; PADDING-RIGHT: 5px; BORDER-TOP: #e7e3e7 1px dashed; PADDING-LEFT: 5px; BACKGROUND: #ffffff; PADDING-BOTTOM: 5px; MARGIN: 5px; BORDER-LEFT: #e7e3e7 1px dashed; LINE-HEIGHT: normal; PADDING-TOP: 5px; BORDER-BOTTOM: #e7e3e7 1px dashed
}
A {
TEXT-DECORATION: none
}
A:hover {
COLOR: #ff0000; TEXT-DECORATION: none
}
.smalltxt {
FONT-SIZE: 12px; FONT-FAMILY: Tahoma, Verdana
}
.tpc_content {
FONT-SIZE: 13px
}
.i_table {
BORDER-RIGHT: #e7e3e7 1px solid; BORDER-TOP: #e7e3e7 1px solid; BORDER-LEFT: #e7e3e7 1px solid; BORDER-BOTTOM: #e7e3e7 1px solid
}
.head {
BACKGROUND-COLOR: #e7e3e7
}
</STYLE>
<!--css-->
<META content="MSHTML 6.00.2900.2963" name=GENERATOR></HEAD>
<BODY vLink=#333333 link=#333333><BR><BR>
<TABLE cellSpacing=1 cellPadding=0 width="98%" align=center bgColor=#e7e3e7>
<TBODY>
<TR>
<TD>
<TABLE cellSpacing=0 cellPadding=8 width="100%">
<TBODY>
<TR>
<TD bgColor=#ffffff><B><A
href="http://bbs.soft666.com/simple/index.php?">怀化气象论坛 </A>-> <A
href="http://bbs.soft666.com/simple/index.php?f22.html">编程天地</A>
-> <A
href="http://bbs.soft666.com/simple/index.php?t37249.html">转贴---卡尔曼滤波器</A></B>
</TD>
<TD align=right bgColor=#ffffff><B><A
href="http://bbs.soft666.com/login.php">登录</A> -> <A
href="http://bbs.soft666.com/register.php">注册</A> -> <A
href="http://bbs.soft666.com/post.php?action=reply&fid=22&tid=37249">回复主题</A>
-> <A
href="http://bbs.soft666.com/post.php?fid=22">发表主题</A></B></TD></TR></TBODY></TABLE></TD></TR></TBODY></TABLE>
<P>
<CENTER></CENTER>
<P></P>
<TABLE class=i_table cellSpacing=1 cellPadding=1 width="98%" align=center>
<TBODY>
<TR>
<TD>
<TABLE cellSpacing=0 cellPadding=3 width="100%">
<TBODY>
<TR class=head>
<TD><B>夜深深</B></TD>
<TD class=smalltxt align=right>2006-05-31 01:31</TD></TR>
<TR bgColor=#ffffff>
<TD class=tpc_content colSpan=2>卡尔曼滤波器 – Kalman Filter<BR><BR>1.
什么是卡尔曼滤波器<BR>(What is the Kalman
Filter?)<BR><BR>在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!<BR><BR>卡尔曼全名Rudolf
Emil
Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A
New Approach to Linear Filtering and Prediction
Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: <A
href="http://www.cs.unc.edu/~welch/media/pdf/Kalman1960.pdf"
target=_blank>http://www.cs.unc.edu/~welch/media/pdf/Kalman1960.pdf</A>。
<BR><BR>简单来说,卡尔曼滤波器是一个“optimal recursive data processing
algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。<BR><BR>2.卡尔曼滤波器的介绍<BR>(Introduction
to the Kalman
Filter)<BR><BR>为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。<BR><BR>在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。<BR><BR>假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White
Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian
Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。<BR><BR>好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。<BR><BR>假如我们要估算k时刻的是实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。<BR><BR>由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance来判断。因为Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23)=24.56度。可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。<BR><BR>现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。<BR><BR>就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。他运行的很快,而且它只保留了上一时刻的covariance。上面的Kg,就是卡尔曼增益(Kalman
Gain)。他可以随不同的时刻而改变他自己的值,是不是很神奇!<BR><BR>下面就要言归正传,讨论真正工程系统上的卡尔曼。<BR><BR>3.
卡尔曼滤波器算法<BR>(The Kalman Filter
Algorithm)<BR><BR>在这一部分,我们就来描述源于Dr Kalman
的卡尔曼滤波器。下面的描述,会涉及一些基本的概念知识,包括概率(Probability),随即变量(Random
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -