📄 runfda.m
字号:
function [Max,k,BestSolutions]=RunFDA(PopSize,NumbVar,T,F,CantGen,MaximumFunction,Card,Cliques,Elitism)
% FDA implementation for discrete values.
% The structure of the probabilistic model is given
% INPUTS
% PopSize: Population size
% NumbVar: Number of variables
% T: Truncation parameter (when T=0, proportional selection is used)
% F: Name of the function that has as an argument a vector or NumbVar variables
% CantGen: Maximum number of generations
% MaximumFunction: Maximum of the function that can be used as stop condition when it is known
% Card: Vector with the dimension of all the variables.
% Cliques: Structure of the model in a list of cliques that defines the junction graph.
%---Each row of Cliques is a clique. The first value is the number of overlapping variables.
%---The second, is the number of new variables.
%---Then, overlapping variables are listed and finally new variables are listed.
% Elitism: Number of the current population individuals that pass to the next one.
%---Elistism=-1: The whole selected population (only for truncation) passes to the next generation
% OUTPUTS
% Max: Maximum value found by the algorithm at each generation
% k: Generation where the maximum was found, case it were known in advance
% BestSolutions: Matrix with the best solution at each generation
% EXAMPLE
% For examples see functions RunUMDA and RunMarkovFDA
Max=0;
k = 1;
% Random initial population
Pop=fix(repmat(Card,PopSize,1).*[rand(PopSize,NumbVar)]);
NewPop = Pop;
while( (k==1) | (k<=CantGen & Max(k-1)<MaximumFunction) )
Pop=NewPop;
% Population is evaluated using function F
for i=1:PopSize
FunVal(i) = feval(F,Pop(i,:));
end
% Solutions are sorted according to the function value
[Val,Ind]= sort(FunVal);
Max(k) = Val(PopSize); %Maximum value of the population
BestSolutions(k,:) = Pop(Ind(PopSize),:); % Best solution
if T==0
%Proportional selection is applied
[Index]=PropSelection(PopSize,FunVal);
SelPop=Pop(Index,:);
else
% Truncation selection is applied
SelPopSize = floor(T*PopSize);
SelPop=Pop(Ind(PopSize:-1:PopSize-SelPopSize+1),:);
end
% At the same step the parameters of the model are learned and the new population is sampled from the model
NewPop = IntFDA(Cliques,SelPop,NumbVar,PopSize,Card);
% The best solutions of the selected populations pass to the new population
if(Elitism==-1 & T>0)
NewPop(1:SelPopSize,:) = SelPop;
elseif(Elitism>0)
NewPop(1:Elitism,:) = SelPop(1:Elitism,:);
end,
k=k+1;
end
return
% Last version 9/26/2005. Roberto Santana (rsantana@si.ehu.es)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -