📄 rungaussianeda.m
字号:
function[Max,k,BestSolutions]=RunGaussianEDA(PopSize,NumbVar,T,F,CantGen,MaximumFunction,InitValues,Complex,ConstraintCheck,Elitism) % Gaussian EDA. Use the univariate and multivariate models to approximate continuous distributions % INPUTS% PopSize: Population size% NumbVar: Number of variables% T: Truncation parameter (when T=0, proportional selection is used)% F: Name of the function that has as an argument a vector or NumbVar variables% CantGen: Maximum number of generations % MaximumFunction: Maximum of the function that can be used as stop condition when it is known % InitValues: (2 X NumbVar) matrix with minimum and maximum values for each variable (this is for initialization) % % Complex: Determines whether interactions are considered (Complex=1) or not (Complex = 0, univariate case)% ConstraintCheck (=1) Checks whether the constraints defined by InitValues are fulfilled% setting to the maximum value those variables over MAX, and to MIN those that do not reach the minimum% ConstraintCheck (=0) allows to violate these bounds % Elitism: Number of the current population individuals that pass to the next one. %---Elistism=-1: The whole selected population (only for truncation) passes to the next generation % OUTPUTS% Max: Maximum value found by the algorithm at each generation% k: Generation where the maximum was found, case it were known in advance% BestSolutions: Matrix with the best solution at each generation% EXAMPLE% [Max,k,BestSolutions]=RunGaussianEDA(300,10,0.5,'sum',20,100,[zeros(1,10);5*ones(1,10)],0,1,1);% In this example the maximum of the function sum is search for in the % interval [0,5]. There are 10 variables.k=1;% Initial random population in the interval of values NewPop = repmat(InitValues(1,:),PopSize,1)+(rand(PopSize,NumbVar).*repmat(InitValues(2,:)-InitValues(1,:),PopSize,1)); while( (k==1) | (k<=CantGen & Max(k-1)<MaximumFunction) ) Pop=NewPop; % Population is evaluated using function F for i=1:PopSize FunVal(i) = feval(F,Pop(i,:)); end % Solutions are sorted according to the function value [Val,Ind]= sort(FunVal); Max(k) = Val(PopSize); %Maximum value of the population BestSolutions(k,:) = Pop(Ind(PopSize),:); % Best solution if T==0 %Proportional selection is applied [Index]=PropSelection(PopSize,FunVal); SelPop=Pop(Index,:); else % Truncation selection is applied SelPopSize = floor(T*PopSize); SelPop=Pop(Ind(PopSize:-1:PopSize-SelPopSize+1),:); end % The probabilistic model is calculated vars_mean = mean(SelPop); % mean vector vars_cov = cov(SelPop); % covariance matrix % The new population is calculated sampling from the model according to its complexity if Complex==0 vars_sigmas = sqrt(diag(vars_cov))'; NewPop = normrnd(repmat(vars_mean,PopSize,1),repmat(vars_sigmas,PopSize,1)); else NewPop = mvnrnd(vars_mean,vars_cov,PopSize); end % Fix the maximum and minimum values if (ConstraintCheck==1) for i=1:NumbVar, under_val = find(NewPop(:,i)<InitValues(1,i)); NewPop(under_val,i) = InitValues(1,i); over_val = find(NewPop(:,i)>InitValues(2,i)); NewPop(over_val,i) = InitValues(2,i); end end % The best solutions of the selected populations pass to the new population if(Elitism==-1 & T>0) NewPop(1:SelPopSize,:) = SelPop; elseif(Elitism>0) NewPop(1:Elitism,:) = SelPop(1:Elitism,:); end, k=k+1; endreturn % Last version 10/05/2005. Roberto Santana (rsantana@si.ehu.es)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -