⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sampling.cpp

📁 This collection of C++ templates wraps the FORTRAN or C interfaces for LAPACK so that they integrate
💻 CPP
字号:
#include <cmath>
#include <boost/numeric/ublas/matrix.hpp>
#include "cholesky.hpp"
#include "lufactor.hpp"
#include "matrix_types.hpp"
#include "sampling.hpp"

using namespace std;
using namespace boost::numeric::ublas;
using namespace ulapack;

const double GaussLikelihood::PI = 3.14159265358979;

GaussLikelihood::GaussLikelihood(const Vector &p, const Matrix &P) : gmean(p)
// Precompute the likelihood normaliser and the inverse-factored covariance
{
	int dim = static_cast<int>(p.size());
	Pfi = chol(P, false); // lower-triangular Cholesky
	C = pow(2.*PI, dim/2) * det_chol(Pfi);
	inv_inplace(Pfi);  
}

double GaussLikelihood::likelihood(const Vector &x) const
{
	return exp(compute_numerator(x)) / C;
}

double GaussLikelihood::loglikelihood(const Vector &x) const
{
	return compute_numerator(x) - log(C);
}

double GaussLikelihood::compute_numerator(const Vector &x) const
{
	Vector M = prod(Pfi, x-gmean); // normalised innovation
	return -0.5*inner_prod(M, M);
}

#if 0

TODOs: 

void sample_gaussian(Vector &s, const Vector &x, const Matrix &P)
{
	len= length(x);
	S= chol(P)';
	X = randn(len,n); 
	s = S*X + x*ones(1,n);
}

void sample_mean(Vector &xm, ) 
{
	if abs(1-sum(w)) > eps, warning('Weights should be normalised'), end

	D = size(x,1); % sample dimension
	w = repmat(w,D,1);

	xw = w .* x;
	xm = sum(xw, 2);
	P  = xw*x' - xm*xm';
}

resample_stratified() 
{

	w = w / sum(w); % normalise
	Neff = 1 / sum(w .^ 2); 

	len = length(w);
	keep = zeros(1,len);
	select = stratified_random(len); 
	w = cumsum(w); 

	ctr=1; 
	for i=1:len
	while ctr<=len & select(ctr)<w(i)
		keep(ctr)= i;
		ctr=ctr+1; 
	end
	end
}

#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -