⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 randomdouble.dectest

📁 eda is an estimation of distributions algorithm
💻 DECTEST
📖 第 1 页 / 共 5 页
字号:
------------------------------------------------------------------------
-- randomDouble.decTest -- decimal Double random testcases            --
-- Copyright (c) IBM Corporation, 2001, 2002.  All rights reserved.   --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases"     --
-- at http://www2.hursley.ibm.com/decimal for the description of      --
-- these testcases.                                                   --
--                                                                    --
-- These testcases are experimental ('beta' versions), and they       --
-- may contain errors.  They are offered on an as-is basis.  In       --
-- particular, achieving the same results as the tests here is not    --
-- a guarantee that an implementation complies with any Standard      --
-- or specification.  The tests are not exhaustive.                   --
--                                                                    --
-- Please send comments, suggestions, and corrections to the author:  --
--   Mike Cowlishaw, IBM Fellow                                       --
--   IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK         --
--   mfc@uk.ibm.com                                                   --
------------------------------------------------------------------------
version: 2.15

extended:    1
precision:   33
maxExponent: 9999
rounding:    half_up

addx2001 add 7.79007988590683228944043302683354E-3375 897200204.509345118011308057808645 -> 897200204.509345118011308057808645 Inexact Rounded
comx2001 compare 7.79007988590683228944043302683354E-3375 897200204.509345118011308057808645 -> -1
divx2001 divide 7.79007988590683228944043302683354E-3375 897200204.509345118011308057808645 -> 8.68265504928971720196853882701564E-3384 Inexact Rounded
dvix2001 divideint 7.79007988590683228944043302683354E-3375 897200204.509345118011308057808645 -> 0
mulx2001 multiply 7.79007988590683228944043302683354E-3375 897200204.509345118011308057808645 -> 6.98926126677974581388447626067843E-3366 Inexact Rounded
powx2001 power 7.79007988590683228944043302683354E-3375 897200205 -> 0E-10031 Underflow Subnormal Inexact Rounded
remx2001 remainder 7.79007988590683228944043302683354E-3375 897200204.509345118011308057808645 -> 7.79007988590683228944043302683354E-3375
subx2001 subtract 7.79007988590683228944043302683354E-3375 897200204.509345118011308057808645 -> -897200204.509345118011308057808645 Inexact Rounded
addx2002 add 599789244560153836844512805400805E+0849 -6.72834137714906743813107286537704 -> 5.99789244560153836844512805400805E+881 Inexact Rounded
comx2002 compare 599789244560153836844512805400805E+0849 -6.72834137714906743813107286537704 -> 1
divx2002 divide 599789244560153836844512805400805E+0849 -6.72834137714906743813107286537704 -> -8.91436999016088142631492413949740E+880 Inexact Rounded
dvix2002 divideint 599789244560153836844512805400805E+0849 -6.72834137714906743813107286537704 -> NaN Division_impossible
mulx2002 multiply 599789244560153836844512805400805E+0849 -6.72834137714906743813107286537704 -> -4.03558679174306427203139628823570E+882 Inexact Rounded
powx2002 power 599789244560153836844512805400805E+0849 -7 -> 3.58104092303479094155487982402603E-6173 Inexact Rounded
remx2002 remainder 599789244560153836844512805400805E+0849 -6.72834137714906743813107286537704 -> NaN Division_impossible
subx2002 subtract 599789244560153836844512805400805E+0849 -6.72834137714906743813107286537704 -> 5.99789244560153836844512805400805E+881 Inexact Rounded
addx2003 add -6999.07593948140160561033452642677 26868454193.5380995172475360410300 -> 26868447194.4621600358459304306955 Inexact Rounded
comx2003 compare -6999.07593948140160561033452642677 26868454193.5380995172475360410300 -> -1
divx2003 divide -6999.07593948140160561033452642677 26868454193.5380995172475360410300 -> -2.60494179868549679060328036142108E-7 Inexact Rounded
dvix2003 divideint -6999.07593948140160561033452642677 26868454193.5380995172475360410300 -> -0
mulx2003 multiply -6999.07593948140160561033452642677 26868454193.5380995172475360410300 -> -188054351277050.678599991712014094 Inexact Rounded
powx2003 power -6999.07593948140160561033452642677 3 -> -342864181034.621674661591171534125 Inexact Rounded
remx2003 remainder -6999.07593948140160561033452642677 26868454193.5380995172475360410300 -> -6999.07593948140160561033452642677
subx2003 subtract -6999.07593948140160561033452642677 26868454193.5380995172475360410300 -> -26868461192.6140389986491416513645 Inexact Rounded
addx2004 add -88009096301.5186426726588138394146 92585585.3990932513808213897200958 -> -87916510716.1195494212779924496945 Inexact Rounded
comx2004 compare -88009096301.5186426726588138394146 92585585.3990932513808213897200958 -> -1
divx2004 divide -88009096301.5186426726588138394146 92585585.3990932513808213897200958 -> -950.570177011383576218077820241489 Inexact Rounded
dvix2004 divideint -88009096301.5186426726588138394146 92585585.3990932513808213897200958 -> -950
mulx2004 multiply -88009096301.5186426726588138394146 92585585.3990932513808213897200958 -> -8148373701521276314.31497748762110 Inexact Rounded
powx2004 power -88009096301.5186426726588138394146 92585585 -> -Infinity Overflow Inexact Rounded
remx2004 remainder -88009096301.5186426726588138394146 92585585.3990932513808213897200958 -> -52790172.3800538608784936053235900
subx2004 subtract -88009096301.5186426726588138394146 92585585.3990932513808213897200958 -> -88101681886.9177359240396352291347 Inexact Rounded
addx2005 add -0393.50074380166257628487826437329E+0736 660.010420232125230361370216237453 -> -3.93500743801662576284878264373290E+738 Inexact Rounded
comx2005 compare -0393.50074380166257628487826437329E+0736 660.010420232125230361370216237453 -> -1
divx2005 divide -0393.50074380166257628487826437329E+0736 660.010420232125230361370216237453 -> -5.96203835180766727442288543487736E+735 Inexact Rounded
dvix2005 divideint -0393.50074380166257628487826437329E+0736 660.010420232125230361370216237453 -> NaN Division_impossible
mulx2005 multiply -0393.50074380166257628487826437329E+0736 660.010420232125230361370216237453 -> -2.59714591278189164474395991697611E+741 Inexact Rounded
powx2005 power -0393.50074380166257628487826437329E+0736 660 -> Infinity Overflow Inexact Rounded
remx2005 remainder -0393.50074380166257628487826437329E+0736 660.010420232125230361370216237453 -> NaN Division_impossible
subx2005 subtract -0393.50074380166257628487826437329E+0736 660.010420232125230361370216237453 -> -3.93500743801662576284878264373290E+738 Inexact Rounded
addx2006 add 323675025166154320027638668467543 790955.575512772684928160030165561 -> 323675025166154320027638669258499 Inexact Rounded
comx2006 compare 323675025166154320027638668467543 790955.575512772684928160030165561 -> 1
divx2006 divide 323675025166154320027638668467543 790955.575512772684928160030165561 -> 409220233331457790477472684.225553 Inexact Rounded
dvix2006 divideint 323675025166154320027638668467543 790955.575512772684928160030165561 -> 409220233331457790477472684
mulx2006 multiply 323675025166154320027638668467543 790955.575512772684928160030165561 -> 2.56012565809406772434833676670804E+38 Inexact Rounded
powx2006 power 323675025166154320027638668467543 790956 -> Infinity Overflow Inexact Rounded
remx2006 remainder 323675025166154320027638668467543 790955.575512772684928160030165561 -> 178402.616484741900045138624964276
subx2006 subtract 323675025166154320027638668467543 790955.575512772684928160030165561 -> 323675025166154320027638667676587 Inexact Rounded
addx2007 add 6923.36016691185894034527350106703 719.012803460359536893704955322394E+3030 -> 7.19012803460359536893704955322394E+3032 Inexact Rounded
comx2007 compare 6923.36016691185894034527350106703 719.012803460359536893704955322394E+3030 -> -1
divx2007 divide 6923.36016691185894034527350106703 719.012803460359536893704955322394E+3030 -> 9.62898036528991542675190731279182E-3030 Inexact Rounded
dvix2007 divideint 6923.36016691185894034527350106703 719.012803460359536893704955322394E+3030 -> 0
mulx2007 multiply 6923.36016691185894034527350106703 719.012803460359536893704955322394E+3030 -> 4.97798460297707843082613211112944E+3036 Inexact Rounded
powx2007 power 6923.36016691185894034527350106703 7 -> 762462476580900273753416641.273304 Inexact Rounded
remx2007 remainder 6923.36016691185894034527350106703 719.012803460359536893704955322394E+3030 -> 6923.36016691185894034527350106703
subx2007 subtract 6923.36016691185894034527350106703 719.012803460359536893704955322394E+3030 -> -7.19012803460359536893704955322394E+3032 Inexact Rounded
addx2008 add -4175.29849797654971527034405465819 -253728652.340387822581587229509957E-4946 -> -4175.29849797654971527034405465819 Inexact Rounded
comx2008 compare -4175.29849797654971527034405465819 -253728652.340387822581587229509957E-4946 -> -1
divx2008 divide -4175.29849797654971527034405465819 -253728652.340387822581587229509957E-4946 -> 1.64557627192029084455215843084495E+4941 Inexact Rounded
dvix2008 divideint -4175.29849797654971527034405465819 -253728652.340387822581587229509957E-4946 -> NaN Division_impossible
mulx2008 multiply -4175.29849797654971527034405465819 -253728652.340387822581587229509957E-4946 -> 1.05939286101043545122093766303550E-4934 Inexact Rounded
powx2008 power -4175.29849797654971527034405465819 -3 -> -1.37384397107575274579124169939736E-11 Inexact Rounded
remx2008 remainder -4175.29849797654971527034405465819 -253728652.340387822581587229509957E-4946 -> NaN Division_impossible
subx2008 subtract -4175.29849797654971527034405465819 -253728652.340387822581587229509957E-4946 -> -4175.29849797654971527034405465819 Inexact Rounded
addx2009 add 185985664032.458419960524795485792 -7284.10029362169184504133917040718 -> 185985656748.358126338832950444453 Inexact Rounded
comx2009 compare 185985664032.458419960524795485792 -7284.10029362169184504133917040718 -> 1
divx2009 divide 185985664032.458419960524795485792 -7284.10029362169184504133917040718 -> -25533100.3878840606280426761004640 Inexact Rounded
dvix2009 divideint 185985664032.458419960524795485792 -7284.10029362169184504133917040718 -> -25533100
mulx2009 multiply 185985664032.458419960524795485792 -7284.10029362169184504133917040718 -> -1354738229988255.70896835341928160 Inexact Rounded
powx2009 power 185985664032.458419960524795485792 -7284 -> 0E-10031 Underflow Subnormal Inexact Rounded
remx2009 remainder 185985664032.458419960524795485792 -7284.10029362169184504133917040718 -> 2825.38639991189977831386843234200
subx2009 subtract 185985664032.458419960524795485792 -7284.10029362169184504133917040718 -> 185985671316.558713582216640527131 Inexact Rounded
addx2010 add -95366388822.2938628308936477003497 -071353.725009452120603751426683820 -> -95366460176.0188722830142514517764 Inexact Rounded
comx2010 compare -95366388822.2938628308936477003497 -071353.725009452120603751426683820 -> -1
divx2010 divide -95366388822.2938628308936477003497 -071353.725009452120603751426683820 -> 1336529.92621843948270050318658379 Inexact Rounded
dvix2010 divideint -95366388822.2938628308936477003497 -071353.725009452120603751426683820 -> 1336529
mulx2010 multiply -95366388822.2938628308936477003497 -071353.725009452120603751426683820 -> 6804747083170444.76631588041814261 Inexact Rounded
powx2010 power -95366388822.2938628308936477003497 -71354 -> 0E-10031 Underflow Subnormal Inexact Rounded

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -