📄 mlpratios.m
字号:
function q = mlpratios(xu,input,y,s1,s2,R);% PURPOSE : To evaluate the normalised importance ratios. % INPUTS : - xu = The predicted network weights samples.% - input = The input observations.% - y = The output observations.% - s1 = Number of neurons in the hidden layer.% - s2 = Number of neurons in the output layer (=1).% - R = Measurement noise variance parameter.% OUTPUTS : - q = The normalised importance ratios.% AUTHOR : Nando de Freitas - Thanks for the acknowledgement :-)% DATE : 08-09-98if nargin < 6, error('Not enough input arguments.'); end[numsamples,time,numweights] = size(xu);q = zeros(numsamples,1);m = zeros(numsamples,1); for s=1:numsamples, m(s,1) = mlp(input,xu(s,1,:),s1,s2); q(s,1) = exp(-.5*inv(R)*(y- m(s,1))^(2));end;q = q./sum(q(:,1));figure(1);subplot(223) hist(q,[0:.002:.09]);ylabel('Histogram','fontsize',15);xlabel('Importance ratios','fontsize',15);subplot(224)plot(q,'m')axis([0 numsamples 0 .5]);ylabel('Importance ratios','fontsize',15);xlabel('Sample space','fontsize',15);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -