⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mlpratios.m

📁 非常不错的非线性非高斯环境下的粒子滤波程序进化算法
💻 M
字号:
function q = mlpratios(xu,input,y,s1,s2,R);% PURPOSE : To evaluate the normalised importance ratios. % INPUTS  : - xu = The predicted network weights samples.%           - input = The input observations.%           - y = The output observations.%           - s1 = Number of neurons in the hidden layer.%           - s2 = Number of neurons in the output layer (=1).%           - R = Measurement noise variance parameter.% OUTPUTS : - q = The normalised importance ratios.% AUTHOR  : Nando de Freitas - Thanks for the acknowledgement :-)% DATE    : 08-09-98if nargin < 6, error('Not enough input arguments.'); end[numsamples,time,numweights] = size(xu);q = zeros(numsamples,1);m = zeros(numsamples,1); for s=1:numsamples,  m(s,1) = mlp(input,xu(s,1,:),s1,s2);  q(s,1) = exp(-.5*inv(R)*(y- m(s,1))^(2));end;q = q./sum(q(:,1));figure(1);subplot(223)       hist(q,[0:.002:.09]);ylabel('Histogram','fontsize',15);xlabel('Importance ratios','fontsize',15);subplot(224)plot(q,'m')axis([0 numsamples 0 .5]);ylabel('Importance ratios','fontsize',15);xlabel('Sample space','fontsize',15);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -