📄 fft.h
字号:
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
int **gFFTBitTable = NULL;
const int MaxFastBits = 16;
int IsPowerOfTwo(int x)
{
if ( x < 2 )
return 0;
if ( x & (x-1) )
return 0;
return 1;
}
int NumberOfBitsNeeded(int PowerOfTwo)
{
int i;
if ( PowerOfTwo < 2 )
{
fprintf(stderr, "Error: FFT called with size %d\n", PowerOfTwo);
exit(1);
}
for ( i=0; ; i++ )
{
if ( PowerOfTwo & (1 << i) )
return i;
}
}
int ReverseBits(int index, int NumBits)
{
int i, rev;
for ( i=rev=0; i < NumBits; i++ ) {
rev = (rev << 1) | (index & 1);
index >>= 1;
}
return rev;
}
void InitFFT()
{
//gFFTBitTable = new int *[MaxFastBits];
gFFTBitTable = (int **) calloc(MaxFastBits, sizeof(int));
int len=2;
for(int b=1; b<=MaxFastBits; b++)
{
//gFFTBitTable[b-1] = new int[len];
gFFTBitTable[b-1] = (int *) calloc(len, sizeof(int));
for(int i=0; i<len; i++)
{
gFFTBitTable[b-1][i] = ReverseBits(i, b);
}
len <<= 1;
}
}
int FastReverseBits(int i, int NumBits)
{
if (NumBits <= MaxFastBits)
return gFFTBitTable[NumBits-1][i];
else
return ReverseBits(i, NumBits);
}
void FFT(int NumSamples, bool InverseTransform, float *RealIn, float *ImagIn, float *RealOut, float *ImagOut)
{
int NumBits;
int i, j, k, n;
int BlockSize, BlockEnd;
double angle_numerator = 2.0 * M_PI;
float tr, ti;
if ( !IsPowerOfTwo(NumSamples) )
{
fprintf (stderr, "%d is not a power of two\n", NumSamples);
exit(1);
}
if (!gFFTBitTable)
InitFFT();
if ( InverseTransform )
angle_numerator = -angle_numerator;
NumBits = NumberOfBitsNeeded ( NumSamples );
for ( i=0; i < NumSamples; i++ )
{
j = FastReverseBits ( i, NumBits );
RealOut[j] = RealIn[i];
ImagOut[j] = (ImagIn == NULL) ? 0.0 : ImagIn[i];
}
BlockEnd = 1;
for ( BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1 )
{
double delta_angle = angle_numerator / (double)BlockSize;
float sm2 = sin ( -2 * delta_angle );
float sm1 = sin ( -delta_angle );
float cm2 = cos ( -2 * delta_angle );
float cm1 = cos ( -delta_angle );
float w = 2 * cm1;
float ar0, ar1, ar2, ai0, ai1, ai2;
for ( i=0; i < NumSamples; i += BlockSize )
{
ar2 = cm2;
ar1 = cm1;
ai2 = sm2;
ai1 = sm1;
for ( j=i, n=0; n < BlockEnd; j++, n++ )
{
ar0 = w*ar1 - ar2;
ar2 = ar1;
ar1 = ar0;
ai0 = w*ai1 - ai2;
ai2 = ai1;
ai1 = ai0;
k = j + BlockEnd;
tr = ar0*RealOut[k] - ai0*ImagOut[k];
ti = ar0*ImagOut[k] + ai0*RealOut[k];
RealOut[k] = RealOut[j] - tr;
ImagOut[k] = ImagOut[j] - ti;
RealOut[j] += tr;
ImagOut[j] += ti;
}
}
BlockEnd = BlockSize;
}
if ( InverseTransform )
{
float denom = (float)NumSamples;
for ( i=0; i < NumSamples; i++ )
{
RealOut[i] /= denom;
ImagOut[i] /= denom;
}
}
}
void PowerSpectrum(int NumSamples, float *In, float *Out)
{
int Half = NumSamples/2;
int i;
float theta = M_PI / Half;
float *tmpReal = new float[Half];
float *tmpImag = new float[Half];
float *RealOut = new float[Half];
float *ImagOut = new float[Half];
for(i=0; i<Half; i++)
{
tmpReal[i] = In[2*i];
tmpImag[i] = In[2*i+1];
}
FFT(Half, 0, tmpReal, tmpImag, RealOut, ImagOut);
float wtemp = float(sin(0.5*theta));
float wpr = -2.0 * wtemp * wtemp;
float wpi = float(sin(theta));
float wr = 1.0+wpr;
float wi = wpi;
int i3;
float h1r, h1i, h2r, h2i, rt, it;
for(i=1; i<Half/2; i++)
{
i3 = Half-i;
h1r = 0.5*(RealOut[i]+RealOut[i3]);
h1i = 0.5*(ImagOut[i]-ImagOut[i3]);
h2r = 0.5*(ImagOut[i]+ImagOut[i3]);
h2i = -0.5*(RealOut[i]-RealOut[i3]);
rt = h1r+wr*h2r-wi*h2i;
it = h1i+wr*h2i+wi*h2r;
Out[i] = rt*rt + it*it;
rt = h1r-wr*h2r+wi*h2i;
it = -h1i+wr*h2i+wi*h2r;
Out[i3] = rt*rt + it*it;
wr=(wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;
}
rt = (h1r=RealOut[0])+ImagOut[0];
it = h1r-ImagOut[0];
Out[0] = rt*rt + it*it;
rt = RealOut[Half/2];
it = ImagOut[Half/2];
Out[Half/2] = rt*rt + it*it;
delete[] tmpReal;
delete[] tmpImag;
delete[] RealOut;
delete[] ImagOut;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -