📄 ssin.s
字号:
//// $Id: ssin.S,v 1.1 1998/12/14 23:15:28 joel Exp $//// ssin.sa 3.3 7/29/91//// The entry point sSIN computes the sine of an input argument// sCOS computes the cosine, and sSINCOS computes both. The// corresponding entry points with a "d" computes the same// corresponding function values for denormalized inputs.//// Input: Double-extended number X in location pointed to// by address register a0.//// Output: The function value sin(X) or cos(X) returned in Fp0 if SIN or// COS is requested. Otherwise, for SINCOS, sin(X) is returned// in Fp0, and cos(X) is returned in Fp1.//// Modifies: Fp0 for SIN or COS; both Fp0 and Fp1 for SINCOS.//// Accuracy and Monotonicity: The returned result is within 1 ulp in// 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the// result is subsequently rounded to double precision. The// result is provably monotonic in double precision.//// Speed: The programs sSIN and sCOS take approximately 150 cycles for// input argument X such that |X| < 15Pi, which is the the usual// situation. The speed for sSINCOS is approximately 190 cycles.//// Algorithm://// SIN and COS:// 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1.//// 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7.//// 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let// k = N mod 4, so in particular, k = 0,1,2,or 3. Overwrite// k by k := k + AdjN.//// 4. If k is even, go to 6.//// 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. Return sgn*cos(r)// where cos(r) is approximated by an even polynomial in r,// 1 + r*r*(B1+s*(B2+ ... + s*B8)), s = r*r.// Exit.//// 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r)// where sin(r) is approximated by an odd polynomial in r// r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r.// Exit.//// 7. If |X| > 1, go to 9.//// 8. (|X|<2**(-40)) If SIN is invoked, return X; otherwise return 1.//// 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 3.//// SINCOS:// 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.//// 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let// k = N mod 4, so in particular, k = 0,1,2,or 3.//// 3. If k is even, go to 5.//// 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), i.e.// j1 exclusive or with the l.s.b. of k.// sgn1 := (-1)**j1, sgn2 := (-1)**j2.// SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where// sin(r) and cos(r) are computed as odd and even polynomials// in r, respectively. Exit//// 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1.// SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where// sin(r) and cos(r) are computed as odd and even polynomials// in r, respectively. Exit//// 6. If |X| > 1, go to 8.//// 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit.//// 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.//// Copyright (C) Motorola, Inc. 1990// All Rights Reserved//// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA // The copyright notice above does not evidence any // actual or intended publication of such source code.//SSIN idnt 2,1 | Motorola 040 Floating Point Software Package |section 8#include "fpsp.defs"BOUNDS1: .long 0x3FD78000,0x4004BC7ETWOBYPI: .long 0x3FE45F30,0x6DC9C883SINA7: .long 0xBD6AAA77,0xCCC994F5SINA6: .long 0x3DE61209,0x7AAE8DA1SINA5: .long 0xBE5AE645,0x2A118AE4SINA4: .long 0x3EC71DE3,0xA5341531SINA3: .long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000SINA2: .long 0x3FF80000,0x88888888,0x888859AF,0x00000000SINA1: .long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000COSB8: .long 0x3D2AC4D0,0xD6011EE3COSB7: .long 0xBDA9396F,0x9F45AC19COSB6: .long 0x3E21EED9,0x0612C972COSB5: .long 0xBE927E4F,0xB79D9FCFCOSB4: .long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000COSB3: .long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000COSB2: .long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5ECOSB1: .long 0xBF000000INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152ATWOPI1: .long 0x40010000,0xC90FDAA2,0x00000000,0x00000000TWOPI2: .long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000 |xref PITBL .set INARG,FP_SCR4 .set X,FP_SCR5 .set XDCARE,X+2 .set XFRAC,X+4 .set RPRIME,FP_SCR1 .set SPRIME,FP_SCR2 .set POSNEG1,L_SCR1 .set TWOTO63,L_SCR1 .set ENDFLAG,L_SCR2 .set N,L_SCR2 .set ADJN,L_SCR3 | xref t_frcinx |xref t_extdnrm |xref sto_cos .global ssindssind://--SIN(X) = X FOR DENORMALIZED X bra t_extdnrm .global scosdscosd://--COS(X) = 1 FOR DENORMALIZED X fmoves #0x3F800000,%fp0//// 9D25B Fix: Sometimes the previous fmove.s sets fpsr bits// fmovel #0,%fpsr// bra t_frcinx .global ssinssin://--SET ADJN TO 0 movel #0,ADJN(%a6) bras SINBGN .global scosscos://--SET ADJN TO 1 movel #1,ADJN(%a6)SINBGN://--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE fmovex (%a0),%fp0 // ...LOAD INPUT movel (%a0),%d0 movew 4(%a0),%d0 fmovex %fp0,X(%a6) andil #0x7FFFFFFF,%d0 // ...COMPACTIFY X cmpil #0x3FD78000,%d0 // ...|X| >= 2**(-40)? bges SOK1 bra SINSMSOK1: cmpil #0x4004BC7E,%d0 // ...|X| < 15 PI? blts SINMAIN bra REDUCEXSINMAIN://--THIS IS THE USUAL CASE, |X| <= 15 PI.//--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP. fmovex %fp0,%fp1 fmuld TWOBYPI,%fp1 // ...X*2/PI//--HIDE THE NEXT THREE INSTRUCTIONS lea PITBL+0x200,%a1 // ...TABLE OF N*PI/2, N = -32,...,32 //--FP1 IS NOW READY fmovel %fp1,N(%a6) // ...CONVERT TO INTEGER movel N(%a6),%d0 asll #4,%d0 addal %d0,%a1 // ...A1 IS THE ADDRESS OF N*PIBY2// ...WHICH IS IN TWO PIECES Y1 & Y2 fsubx (%a1)+,%fp0 // ...X-Y1//--HIDE THE NEXT ONE fsubs (%a1),%fp0 // ...FP0 IS R = (X-Y1)-Y2SINCONT://--continuation from REDUCEX//--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED movel N(%a6),%d0 addl ADJN(%a6),%d0 // ...SEE IF D0 IS ODD OR EVEN rorl #1,%d0 // ...D0 WAS ODD IFF D0 IS NEGATIVE cmpil #0,%d0 blt COSPOLYSINPOLY://--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.//--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY//--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE//--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS//--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))])//--WHERE T=S*S.//--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION//--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT. fmovex %fp0,X(%a6) // ...X IS R fmulx %fp0,%fp0 // ...FP0 IS S//---HIDE THE NEXT TWO WHILE WAITING FOR FP0 fmoved SINA7,%fp3 fmoved SINA6,%fp2//--FP0 IS NOW READY fmovex %fp0,%fp1 fmulx %fp1,%fp1 // ...FP1 IS T//--HIDE THE NEXT TWO WHILE WAITING FOR FP1 rorl #1,%d0 andil #0x80000000,%d0// ...LEAST SIG. BIT OF D0 IN SIGN POSITION eorl %d0,X(%a6) // ...X IS NOW R'= SGN*R fmulx %fp1,%fp3 // ...TA7 fmulx %fp1,%fp2 // ...TA6 faddd SINA5,%fp3 // ...A5+TA7 faddd SINA4,%fp2 // ...A4+TA6 fmulx %fp1,%fp3 // ...T(A5+TA7) fmulx %fp1,%fp2 // ...T(A4+TA6) faddd SINA3,%fp3 // ...A3+T(A5+TA7) faddx SINA2,%fp2 // ...A2+T(A4+TA6) fmulx %fp3,%fp1 // ...T(A3+T(A5+TA7)) fmulx %fp0,%fp2 // ...S(A2+T(A4+TA6)) faddx SINA1,%fp1 // ...A1+T(A3+T(A5+TA7)) fmulx X(%a6),%fp0 // ...R'*S faddx %fp2,%fp1 // ...[A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))]//--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING//--FP2 RELEASED, RESTORE NOW AND TAKE FULL ADVANTAGE OF HIDING fmulx %fp1,%fp0 // ...SIN(R')-R'//--FP1 RELEASED. fmovel %d1,%FPCR //restore users exceptions faddx X(%a6),%fp0 //last inst - possible exception set bra t_frcinxCOSPOLY://--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.//--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY//--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE//--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS//--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))])//--WHERE T=S*S.//--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION//--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2//--AND IS THEREFORE STORED AS SINGLE PRECISION. fmulx %fp0,%fp0 // ...FP0 IS S//---HIDE THE NEXT TWO WHILE WAITING FOR FP0 fmoved COSB8,%fp2 fmoved COSB7,%fp3//--FP0 IS NOW READY fmovex %fp0,%fp1 fmulx %fp1,%fp1 // ...FP1 IS T//--HIDE THE NEXT TWO WHILE WAITING FOR FP1 fmovex %fp0,X(%a6) // ...X IS S rorl #1,%d0 andil #0x80000000,%d0// ...LEAST SIG. BIT OF D0 IN SIGN POSITION fmulx %fp1,%fp2 // ...TB8//--HIDE THE NEXT TWO WHILE WAITING FOR THE XU eorl %d0,X(%a6) // ...X IS NOW S'= SGN*S andil #0x80000000,%d0 fmulx %fp1,%fp3 // ...TB7//--HIDE THE NEXT TWO WHILE WAITING FOR THE XU oril #0x3F800000,%d0 // ...D0 IS SGN IN SINGLE movel %d0,POSNEG1(%a6) faddd COSB6,%fp2 // ...B6+TB8 faddd COSB5,%fp3 // ...B5+TB7 fmulx %fp1,%fp2 // ...T(B6+TB8) fmulx %fp1,%fp3 // ...T(B5+TB7) faddd COSB4,%fp2 // ...B4+T(B6+TB8) faddx COSB3,%fp3 // ...B3+T(B5+TB7) fmulx %fp1,%fp2 // ...T(B4+T(B6+TB8)) fmulx %fp3,%fp1 // ...T(B3+T(B5+TB7)) faddx COSB2,%fp2 // ...B2+T(B4+T(B6+TB8)) fadds COSB1,%fp1 // ...B1+T(B3+T(B5+TB7)) fmulx %fp2,%fp0 // ...S(B2+T(B4+T(B6+TB8)))//--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING//--FP2 RELEASED. faddx %fp1,%fp0//--FP1 RELEASED fmulx X(%a6),%fp0 fmovel %d1,%FPCR //restore users exceptions fadds POSNEG1(%a6),%fp0 //last inst - possible exception set bra t_frcinxSINBORS://--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.//--IF |X| < 2**(-40), RETURN X OR 1. cmpil #0x3FFF8000,%d0 bgts REDUCEX SINSM: movel ADJN(%a6),%d0 cmpil #0,%d0 bgts COSTINYSINTINY: movew #0x0000,XDCARE(%a6) // ...JUST IN CASE fmovel %d1,%FPCR //restore users exceptions fmovex X(%a6),%fp0 //last inst - possible exception set bra t_frcinxCOSTINY: fmoves #0x3F800000,%fp0 fmovel %d1,%FPCR //restore users exceptions fsubs #0x00800000,%fp0 //last inst - possible exception set
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -