⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bindec.s

📁 RTEMS (Real-Time Executive for Multiprocessor Systems) is a free open source real-time operating sys
💻 S
📖 第 1 页 / 共 2 页
字号:
////      $Id: bindec.S,v 1.2 1999/07/26 22:11:02 joel Exp $////	bindec.sa 3.4 1/3/91////	bindec////	Description://		Converts an input in extended precision format//		to bcd format.////	Input://		a0 points to the input extended precision value//		value in memory; d0 contains the k-factor sign-extended//		to 32-bits.  The input may be either normalized,//		unnormalized, or denormalized.////	Output:	result in the FP_SCR1 space on the stack.////	Saves and Modifies: D2-D7,A2,FP2////	Algorithm:////	A1.	Set RM and size ext;  Set SIGMA = sign of input.  //		The k-factor is saved for use in d7. Clear the//		BINDEC_FLG for separating normalized/denormalized//		input.  If input is unnormalized or denormalized,//		normalize it.////	A2.	Set X = abs(input).////	A3.	Compute ILOG.//		ILOG is the log base 10 of the input value.  It is//		approximated by adding e + 0.f when the original //		value is viewed as 2^^e * 1.f in extended precision.  //		This value is stored in d6.////	A4.	Clr INEX bit.//		The operation in A3 above may have set INEX2.  ////	A5.	Set ICTR = 0;//		ICTR is a flag used in A13.  It must be set before the //		loop entry A6.////	A6.	Calculate LEN.//		LEN is the number of digits to be displayed.  The//		k-factor can dictate either the total number of digits,//		if it is a positive number, or the number of digits//		after the decimal point which are to be included as//		significant.  See the 68882 manual for examples.//		If LEN is computed to be greater than 17, set OPERR in//		USER_FPSR.  LEN is stored in d4.////	A7.	Calculate SCALE.//		SCALE is equal to 10^ISCALE, where ISCALE is the number//		of decimal places needed to insure LEN integer digits//		in the output before conversion to bcd. LAMBDA is the//		sign of ISCALE, used in A9. Fp1 contains//		10^^(abs(ISCALE)) using a rounding mode which is a//		function of the original rounding mode and the signs//		of ISCALE and X.  A table is given in the code.////	A8.	Clr INEX; Force RZ.//		The operation in A3 above may have set INEX2.  //		RZ mode is forced for the scaling operation to insure//		only one rounding error.  The grs bits are collected in //		the INEX flag for use in A10.////	A9.	Scale X -> Y.//		The mantissa is scaled to the desired number of//		significant digits.  The excess digits are collected//		in INEX2.////	A10.	Or in INEX.//		If INEX is set, round error occurred.  This is//		compensated for by 'or-ing' in the INEX2 flag to//		the lsb of Y.////	A11.	Restore original FPCR; set size ext.//		Perform FINT operation in the user's rounding mode.//		Keep the size to extended.////	A12.	Calculate YINT = FINT(Y) according to user's rounding//		mode.  The FPSP routine sintd0 is used.  The output//		is in fp0.////	A13.	Check for LEN digits.//		If the int operation results in more than LEN digits,//		or less than LEN -1 digits, adjust ILOG and repeat from//		A6.  This test occurs only on the first pass.  If the//		result is exactly 10^LEN, decrement ILOG and divide//		the mantissa by 10.////	A14.	Convert the mantissa to bcd.//		The binstr routine is used to convert the LEN digit //		mantissa to bcd in memory.  The input to binstr is//		to be a fraction; i.e. (mantissa)/10^LEN and adjusted//		such that the decimal point is to the left of bit 63.//		The bcd digits are stored in the correct position in //		the final string area in memory.////	A15.	Convert the exponent to bcd.//		As in A14 above, the exp is converted to bcd and the//		digits are stored in the final string.//		Test the length of the final exponent string.  If the//		length is 4, set operr.////	A16.	Write sign bits to final string.////	Implementation Notes:////	The registers are used as follows:////		d0: scratch; LEN input to binstr//		d1: scratch//		d2: upper 32-bits of mantissa for binstr//		d3: scratch;lower 32-bits of mantissa for binstr//		d4: LEN//      		d5: LAMBDA/ICTR//		d6: ILOG//		d7: k-factor//		a0: ptr for original operand/final result//		a1: scratch pointer//		a2: pointer to FP_X; abs(original value) in ext//		fp0: scratch//		fp1: scratch//		fp2: scratch//		F_SCR1://		F_SCR2://		L_SCR1://		L_SCR2://		Copyright (C) Motorola, Inc. 1990//			All Rights Reserved////	THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA //	The copyright notice above does not evidence any  //	actual or intended publication of such source code.//BINDEC    idnt    2,1 | Motorola 040 Floating Point Software Package#include "fpsp.defs"	|section	8// Constants in extended precisionLOG2: 	.long	0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000LOG2UP1:	.long	0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000// Constants in single precisionFONE: 	.long	0x3F800000,0x00000000,0x00000000,0x00000000FTWO:	.long	0x40000000,0x00000000,0x00000000,0x00000000FTEN: 	.long	0x41200000,0x00000000,0x00000000,0x00000000F4933:	.long	0x459A2800,0x00000000,0x00000000,0x00000000RBDTBL: 	.byte	0,0,0,0	.byte	3,3,2,2	.byte	3,2,2,3	.byte	2,3,3,2	|xref	binstr	|xref	sintdo	|xref	ptenrn,ptenrm,ptenrp	.global	bindec	.global	sc_mulbindec:	moveml	%d2-%d7/%a2,-(%a7)	fmovemx %fp0-%fp2,-(%a7)// A1. Set RM and size ext. Set SIGMA = sign input;//     The k-factor is saved for use in d7.  Clear BINDEC_FLG for//     separating  normalized/denormalized input.  If the input//     is a denormalized number, set the BINDEC_FLG memory word//     to signal denorm.  If the input is unnormalized, normalize//     the input and test for denormalized result.  //	fmovel	#rm_mode,%FPCR	//set RM and ext	movel	(%a0),L_SCR2(%a6)	//save exponent for sign check	movel	%d0,%d7		//move k-factor to d7	clrb	BINDEC_FLG(%a6)	//clr norm/denorm flag	movew	STAG(%a6),%d0	//get stag	andiw	#0xe000,%d0	//isolate stag bits	beq	A2_str		//if zero, input is norm//// Normalize the denorm//un_de_norm:	movew	(%a0),%d0	andiw	#0x7fff,%d0	//strip sign of normalized exp	movel	4(%a0),%d1	movel	8(%a0),%d2norm_loop:	subw	#1,%d0	lsll	#1,%d2	roxll	#1,%d1	tstl	%d1	bges	norm_loop//// Test if the normalized input is denormalized//	tstw	%d0	bgts	pos_exp		//if greater than zero, it is a norm	st	BINDEC_FLG(%a6)	//set flag for denormpos_exp:	andiw	#0x7fff,%d0	//strip sign of normalized exp	movew	%d0,(%a0)	movel	%d1,4(%a0)	movel	%d2,8(%a0)// A2. Set X = abs(input).//A2_str:	movel	(%a0),FP_SCR2(%a6) // move input to work space	movel	4(%a0),FP_SCR2+4(%a6) // move input to work space	movel	8(%a0),FP_SCR2+8(%a6) // move input to work space	andil	#0x7fffffff,FP_SCR2(%a6) //create abs(X)// A3. Compute ILOG.//     ILOG is the log base 10 of the input value.  It is approx-//     imated by adding e + 0.f when the original value is viewed//     as 2^^e * 1.f in extended precision.  This value is stored//     in d6.//// Register usage://	Input/Output//	d0: k-factor/exponent//	d2: x/x//	d3: x/x//	d4: x/x//	d5: x/x//	d6: x/ILOG//	d7: k-factor/Unchanged//	a0: ptr for original operand/final result//	a1: x/x//	a2: x/x//	fp0: x/float(ILOG)//	fp1: x/x//	fp2: x/x//	F_SCR1:x/x//	F_SCR2:Abs(X)/Abs(X) with $3fff exponent//	L_SCR1:x/x//	L_SCR2:first word of X packed/Unchanged	tstb	BINDEC_FLG(%a6)	//check for denorm	beqs	A3_cont		//if clr, continue with norm	movel	#-4933,%d6	//force ILOG = -4933	bras	A4_strA3_cont:	movew	FP_SCR2(%a6),%d0	//move exp to d0	movew	#0x3fff,FP_SCR2(%a6) //replace exponent with 0x3fff	fmovex	FP_SCR2(%a6),%fp0	//now fp0 has 1.f	subw	#0x3fff,%d0	//strip off bias	faddw	%d0,%fp0		//add in exp	fsubs	FONE,%fp0	//subtract off 1.0	fbge	pos_res		//if pos, branch 	fmulx	LOG2UP1,%fp0	//if neg, mul by LOG2UP1	fmovel	%fp0,%d6		//put ILOG in d6 as a lword	bras	A4_str		//go move out ILOGpos_res:	fmulx	LOG2,%fp0	//if pos, mul by LOG2	fmovel	%fp0,%d6		//put ILOG in d6 as a lword// A4. Clr INEX bit.//     The operation in A3 above may have set INEX2.  A4_str:		fmovel	#0,%FPSR		//zero all of fpsr - nothing needed// A5. Set ICTR = 0;//     ICTR is a flag used in A13.  It must be set before the //     loop entry A6. The lower word of d5 is used for ICTR.	clrw	%d5		//clear ICTR// A6. Calculate LEN.//     LEN is the number of digits to be displayed.  The k-factor//     can dictate either the total number of digits, if it is//     a positive number, or the number of digits after the//     original decimal point which are to be included as//     significant.  See the 68882 manual for examples.//     If LEN is computed to be greater than 17, set OPERR in//     USER_FPSR.  LEN is stored in d4.//// Register usage://	Input/Output//	d0: exponent/Unchanged//	d2: x/x/scratch//	d3: x/x//	d4: exc picture/LEN//	d5: ICTR/Unchanged//	d6: ILOG/Unchanged//	d7: k-factor/Unchanged//	a0: ptr for original operand/final result//	a1: x/x//	a2: x/x//	fp0: float(ILOG)/Unchanged//	fp1: x/x//	fp2: x/x//	F_SCR1:x/x//	F_SCR2:Abs(X) with $3fff exponent/Unchanged//	L_SCR1:x/x//	L_SCR2:first word of X packed/UnchangedA6_str:		tstl	%d7		//branch on sign of k	bles	k_neg		//if k <= 0, LEN = ILOG + 1 - k	movel	%d7,%d4		//if k > 0, LEN = k	bras	len_ck		//skip to LEN checkk_neg:	movel	%d6,%d4		//first load ILOG to d4	subl	%d7,%d4		//subtract off k	addql	#1,%d4		//add in the 1len_ck:	tstl	%d4		//LEN check: branch on sign of LEN	bles	LEN_ng		//if neg, set LEN = 1	cmpl	#17,%d4		//test if LEN > 17	bles	A7_str		//if not, forget it	movel	#17,%d4		//set max LEN = 17	tstl	%d7		//if negative, never set OPERR	bles	A7_str		//if positive, continue	orl	#opaop_mask,USER_FPSR(%a6) //set OPERR & AIOP in USER_FPSR	bras	A7_str		//finished hereLEN_ng:	moveql	#1,%d4		//min LEN is 1// A7. Calculate SCALE.//     SCALE is equal to 10^ISCALE, where ISCALE is the number//     of decimal places needed to insure LEN integer digits//     in the output before conversion to bcd. LAMBDA is the sign//     of ISCALE, used in A9.  Fp1 contains 10^^(abs(ISCALE)) using//     the rounding mode as given in the following table (see//     Coonen, p. 7.23 as ref.; however, the SCALE variable is//     of opposite sign in bindec.sa from Coonen).////	Initial					USE//	FPCR[6:5]	LAMBDA	SIGN(X)		FPCR[6:5]//	----------------------------------------------//	 RN	00	   0	   0		00/0	RN//	 RN	00	   0	   1		00/0	RN//	 RN	00	   1	   0		00/0	RN//	 RN	00	   1	   1		00/0	RN//	 RZ	01	   0	   0		11/3	RP//	 RZ	01	   0	   1		11/3	RP//	 RZ	01	   1	   0		10/2	RM//	 RZ	01	   1	   1		10/2	RM//	 RM	10	   0	   0		11/3	RP//	 RM	10	   0	   1		10/2	RM//	 RM	10	   1	   0		10/2	RM//	 RM	10	   1	   1		11/3	RP//	 RP	11	   0	   0		10/2	RM//	 RP	11	   0	   1		11/3	RP//	 RP	11	   1	   0		11/3	RP//	 RP	11	   1	   1		10/2	RM//// Register usage://	Input/Output//	d0: exponent/scratch - final is 0//	d2: x/0 or 24 for A9//	d3: x/scratch - offset ptr into PTENRM array//	d4: LEN/Unchanged//	d5: 0/ICTR:LAMBDA//	d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k))//	d7: k-factor/Unchanged//	a0: ptr for original operand/final result//	a1: x/ptr to PTENRM array//	a2: x/x//	fp0: float(ILOG)/Unchanged//	fp1: x/10^ISCALE//	fp2: x/x//	F_SCR1:x/x//	F_SCR2:Abs(X) with $3fff exponent/Unchanged//	L_SCR1:x/x//	L_SCR2:first word of X packed/UnchangedA7_str:		tstl	%d7		//test sign of k	bgts	k_pos		//if pos and > 0, skip this	cmpl	%d6,%d7		//test k - ILOG	blts	k_pos		//if ILOG >= k, skip this	movel	%d7,%d6		//if ((k<0) & (ILOG < k)) ILOG = kk_pos:		movel	%d6,%d0		//calc ILOG + 1 - LEN in d0	addql	#1,%d0		//add the 1	subl	%d4,%d0		//sub off LEN	swap	%d5		//use upper word of d5 for LAMBDA	clrw	%d5		//set it zero initially	clrw	%d2		//set up d2 for very small case	tstl	%d0		//test sign of ISCALE	bges	iscale		//if pos, skip next inst	addqw	#1,%d5		//if neg, set LAMBDA true	cmpl	#0xffffecd4,%d0	//test iscale <= -4908	bgts	no_inf		//if false, skip rest	addil	#24,%d0		//add in 24 to iscale	movel	#24,%d2		//put 24 in d2 for A9no_inf:		negl	%d0		//and take abs of ISCALEiscale:		fmoves	FONE,%fp1	//init fp1 to 1	bfextu	USER_FPCR(%a6){#26:#2},%d1 //get initial rmode bits	lslw	#1,%d1		//put them in bits 2:1	addw	%d5,%d1		//add in LAMBDA	lslw	#1,%d1		//put them in bits 3:1	tstl	L_SCR2(%a6)	//test sign of original x	bges	x_pos		//if pos, don't set bit 0	addql	#1,%d1		//if neg, set bit 0x_pos:	leal	RBDTBL,%a2	//load rbdtbl base	moveb	(%a2,%d1),%d3	//load d3 with new rmode	lsll	#4,%d3		//put bits in proper position	fmovel	%d3,%fpcr		//load bits into fpu	lsrl	#4,%d3		//put bits in proper position	tstb	%d3		//decode new rmode for pten table	bnes	not_rn		//if zero, it is RN	leal	PTENRN,%a1	//load a1 with RN table base	bras	rmode		//exit decodenot_rn:	lsrb	#1,%d3		//get lsb in carry	bccs	not_rp		//if carry clear, it is RM	leal	PTENRP,%a1	//load a1 with RP table base	bras	rmode		//exit decodenot_rp:	leal	PTENRM,%a1	//load a1 with RM table basermode:	clrl	%d3		//clr table indexe_loop:		lsrl	#1,%d0		//shift next bit into carry	bccs	e_next		//if zero, skip the mul	fmulx	(%a1,%d3),%fp1	//mul by 10**(d3_bit_no)e_next:		addl	#12,%d3		//inc d3 to next pwrten table entry	tstl	%d0		//test if ISCALE is zero	bnes	e_loop		//if not, loop// A8. Clr INEX; Force RZ.//     The operation in A3 above may have set INEX2.  //     RZ mode is forced for the scaling operation to insure//     only one rounding error.  The grs bits are collected in //     the INEX flag for use in A10.//// Register usage://	Input/Output	fmovel	#0,%FPSR		//clr INEX 	fmovel	#rz_mode,%FPCR	//set RZ rounding mode// A9. Scale X -> Y.//     The mantissa is scaled to the desired number of significant//     digits.  The excess digits are collected in INEX2. If mul,//     Check d2 for excess 10 exponential value.  If not zero, //     the iscale value would have caused the pwrten calculation//     to overflow.  Only a negative iscale can cause this, so//     multiply by 10^(d2), which is now only allowed to be 24,//     with a multiply by 10^8 and 10^16, which is exact since//     10^24 is exact.  If the input was denormalized, we must//     create a busy stack frame with the mul command and the

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -