📄 bindec.s
字号:
//// $Id: bindec.S,v 1.2 1999/07/26 22:11:02 joel Exp $//// bindec.sa 3.4 1/3/91//// bindec//// Description:// Converts an input in extended precision format// to bcd format.//// Input:// a0 points to the input extended precision value// value in memory; d0 contains the k-factor sign-extended// to 32-bits. The input may be either normalized,// unnormalized, or denormalized.//// Output: result in the FP_SCR1 space on the stack.//// Saves and Modifies: D2-D7,A2,FP2//// Algorithm://// A1. Set RM and size ext; Set SIGMA = sign of input. // The k-factor is saved for use in d7. Clear the// BINDEC_FLG for separating normalized/denormalized// input. If input is unnormalized or denormalized,// normalize it.//// A2. Set X = abs(input).//// A3. Compute ILOG.// ILOG is the log base 10 of the input value. It is// approximated by adding e + 0.f when the original // value is viewed as 2^^e * 1.f in extended precision. // This value is stored in d6.//// A4. Clr INEX bit.// The operation in A3 above may have set INEX2. //// A5. Set ICTR = 0;// ICTR is a flag used in A13. It must be set before the // loop entry A6.//// A6. Calculate LEN.// LEN is the number of digits to be displayed. The// k-factor can dictate either the total number of digits,// if it is a positive number, or the number of digits// after the decimal point which are to be included as// significant. See the 68882 manual for examples.// If LEN is computed to be greater than 17, set OPERR in// USER_FPSR. LEN is stored in d4.//// A7. Calculate SCALE.// SCALE is equal to 10^ISCALE, where ISCALE is the number// of decimal places needed to insure LEN integer digits// in the output before conversion to bcd. LAMBDA is the// sign of ISCALE, used in A9. Fp1 contains// 10^^(abs(ISCALE)) using a rounding mode which is a// function of the original rounding mode and the signs// of ISCALE and X. A table is given in the code.//// A8. Clr INEX; Force RZ.// The operation in A3 above may have set INEX2. // RZ mode is forced for the scaling operation to insure// only one rounding error. The grs bits are collected in // the INEX flag for use in A10.//// A9. Scale X -> Y.// The mantissa is scaled to the desired number of// significant digits. The excess digits are collected// in INEX2.//// A10. Or in INEX.// If INEX is set, round error occurred. This is// compensated for by 'or-ing' in the INEX2 flag to// the lsb of Y.//// A11. Restore original FPCR; set size ext.// Perform FINT operation in the user's rounding mode.// Keep the size to extended.//// A12. Calculate YINT = FINT(Y) according to user's rounding// mode. The FPSP routine sintd0 is used. The output// is in fp0.//// A13. Check for LEN digits.// If the int operation results in more than LEN digits,// or less than LEN -1 digits, adjust ILOG and repeat from// A6. This test occurs only on the first pass. If the// result is exactly 10^LEN, decrement ILOG and divide// the mantissa by 10.//// A14. Convert the mantissa to bcd.// The binstr routine is used to convert the LEN digit // mantissa to bcd in memory. The input to binstr is// to be a fraction; i.e. (mantissa)/10^LEN and adjusted// such that the decimal point is to the left of bit 63.// The bcd digits are stored in the correct position in // the final string area in memory.//// A15. Convert the exponent to bcd.// As in A14 above, the exp is converted to bcd and the// digits are stored in the final string.// Test the length of the final exponent string. If the// length is 4, set operr.//// A16. Write sign bits to final string.//// Implementation Notes://// The registers are used as follows://// d0: scratch; LEN input to binstr// d1: scratch// d2: upper 32-bits of mantissa for binstr// d3: scratch;lower 32-bits of mantissa for binstr// d4: LEN// d5: LAMBDA/ICTR// d6: ILOG// d7: k-factor// a0: ptr for original operand/final result// a1: scratch pointer// a2: pointer to FP_X; abs(original value) in ext// fp0: scratch// fp1: scratch// fp2: scratch// F_SCR1:// F_SCR2:// L_SCR1:// L_SCR2:// Copyright (C) Motorola, Inc. 1990// All Rights Reserved//// THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA // The copyright notice above does not evidence any // actual or intended publication of such source code.//BINDEC idnt 2,1 | Motorola 040 Floating Point Software Package#include "fpsp.defs" |section 8// Constants in extended precisionLOG2: .long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000LOG2UP1: .long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000// Constants in single precisionFONE: .long 0x3F800000,0x00000000,0x00000000,0x00000000FTWO: .long 0x40000000,0x00000000,0x00000000,0x00000000FTEN: .long 0x41200000,0x00000000,0x00000000,0x00000000F4933: .long 0x459A2800,0x00000000,0x00000000,0x00000000RBDTBL: .byte 0,0,0,0 .byte 3,3,2,2 .byte 3,2,2,3 .byte 2,3,3,2 |xref binstr |xref sintdo |xref ptenrn,ptenrm,ptenrp .global bindec .global sc_mulbindec: moveml %d2-%d7/%a2,-(%a7) fmovemx %fp0-%fp2,-(%a7)// A1. Set RM and size ext. Set SIGMA = sign input;// The k-factor is saved for use in d7. Clear BINDEC_FLG for// separating normalized/denormalized input. If the input// is a denormalized number, set the BINDEC_FLG memory word// to signal denorm. If the input is unnormalized, normalize// the input and test for denormalized result. // fmovel #rm_mode,%FPCR //set RM and ext movel (%a0),L_SCR2(%a6) //save exponent for sign check movel %d0,%d7 //move k-factor to d7 clrb BINDEC_FLG(%a6) //clr norm/denorm flag movew STAG(%a6),%d0 //get stag andiw #0xe000,%d0 //isolate stag bits beq A2_str //if zero, input is norm//// Normalize the denorm//un_de_norm: movew (%a0),%d0 andiw #0x7fff,%d0 //strip sign of normalized exp movel 4(%a0),%d1 movel 8(%a0),%d2norm_loop: subw #1,%d0 lsll #1,%d2 roxll #1,%d1 tstl %d1 bges norm_loop//// Test if the normalized input is denormalized// tstw %d0 bgts pos_exp //if greater than zero, it is a norm st BINDEC_FLG(%a6) //set flag for denormpos_exp: andiw #0x7fff,%d0 //strip sign of normalized exp movew %d0,(%a0) movel %d1,4(%a0) movel %d2,8(%a0)// A2. Set X = abs(input).//A2_str: movel (%a0),FP_SCR2(%a6) // move input to work space movel 4(%a0),FP_SCR2+4(%a6) // move input to work space movel 8(%a0),FP_SCR2+8(%a6) // move input to work space andil #0x7fffffff,FP_SCR2(%a6) //create abs(X)// A3. Compute ILOG.// ILOG is the log base 10 of the input value. It is approx-// imated by adding e + 0.f when the original value is viewed// as 2^^e * 1.f in extended precision. This value is stored// in d6.//// Register usage:// Input/Output// d0: k-factor/exponent// d2: x/x// d3: x/x// d4: x/x// d5: x/x// d6: x/ILOG// d7: k-factor/Unchanged// a0: ptr for original operand/final result// a1: x/x// a2: x/x// fp0: x/float(ILOG)// fp1: x/x// fp2: x/x// F_SCR1:x/x// F_SCR2:Abs(X)/Abs(X) with $3fff exponent// L_SCR1:x/x// L_SCR2:first word of X packed/Unchanged tstb BINDEC_FLG(%a6) //check for denorm beqs A3_cont //if clr, continue with norm movel #-4933,%d6 //force ILOG = -4933 bras A4_strA3_cont: movew FP_SCR2(%a6),%d0 //move exp to d0 movew #0x3fff,FP_SCR2(%a6) //replace exponent with 0x3fff fmovex FP_SCR2(%a6),%fp0 //now fp0 has 1.f subw #0x3fff,%d0 //strip off bias faddw %d0,%fp0 //add in exp fsubs FONE,%fp0 //subtract off 1.0 fbge pos_res //if pos, branch fmulx LOG2UP1,%fp0 //if neg, mul by LOG2UP1 fmovel %fp0,%d6 //put ILOG in d6 as a lword bras A4_str //go move out ILOGpos_res: fmulx LOG2,%fp0 //if pos, mul by LOG2 fmovel %fp0,%d6 //put ILOG in d6 as a lword// A4. Clr INEX bit.// The operation in A3 above may have set INEX2. A4_str: fmovel #0,%FPSR //zero all of fpsr - nothing needed// A5. Set ICTR = 0;// ICTR is a flag used in A13. It must be set before the // loop entry A6. The lower word of d5 is used for ICTR. clrw %d5 //clear ICTR// A6. Calculate LEN.// LEN is the number of digits to be displayed. The k-factor// can dictate either the total number of digits, if it is// a positive number, or the number of digits after the// original decimal point which are to be included as// significant. See the 68882 manual for examples.// If LEN is computed to be greater than 17, set OPERR in// USER_FPSR. LEN is stored in d4.//// Register usage:// Input/Output// d0: exponent/Unchanged// d2: x/x/scratch// d3: x/x// d4: exc picture/LEN// d5: ICTR/Unchanged// d6: ILOG/Unchanged// d7: k-factor/Unchanged// a0: ptr for original operand/final result// a1: x/x// a2: x/x// fp0: float(ILOG)/Unchanged// fp1: x/x// fp2: x/x// F_SCR1:x/x// F_SCR2:Abs(X) with $3fff exponent/Unchanged// L_SCR1:x/x// L_SCR2:first word of X packed/UnchangedA6_str: tstl %d7 //branch on sign of k bles k_neg //if k <= 0, LEN = ILOG + 1 - k movel %d7,%d4 //if k > 0, LEN = k bras len_ck //skip to LEN checkk_neg: movel %d6,%d4 //first load ILOG to d4 subl %d7,%d4 //subtract off k addql #1,%d4 //add in the 1len_ck: tstl %d4 //LEN check: branch on sign of LEN bles LEN_ng //if neg, set LEN = 1 cmpl #17,%d4 //test if LEN > 17 bles A7_str //if not, forget it movel #17,%d4 //set max LEN = 17 tstl %d7 //if negative, never set OPERR bles A7_str //if positive, continue orl #opaop_mask,USER_FPSR(%a6) //set OPERR & AIOP in USER_FPSR bras A7_str //finished hereLEN_ng: moveql #1,%d4 //min LEN is 1// A7. Calculate SCALE.// SCALE is equal to 10^ISCALE, where ISCALE is the number// of decimal places needed to insure LEN integer digits// in the output before conversion to bcd. LAMBDA is the sign// of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using// the rounding mode as given in the following table (see// Coonen, p. 7.23 as ref.; however, the SCALE variable is// of opposite sign in bindec.sa from Coonen).//// Initial USE// FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5]// ----------------------------------------------// RN 00 0 0 00/0 RN// RN 00 0 1 00/0 RN// RN 00 1 0 00/0 RN// RN 00 1 1 00/0 RN// RZ 01 0 0 11/3 RP// RZ 01 0 1 11/3 RP// RZ 01 1 0 10/2 RM// RZ 01 1 1 10/2 RM// RM 10 0 0 11/3 RP// RM 10 0 1 10/2 RM// RM 10 1 0 10/2 RM// RM 10 1 1 11/3 RP// RP 11 0 0 10/2 RM// RP 11 0 1 11/3 RP// RP 11 1 0 11/3 RP// RP 11 1 1 10/2 RM//// Register usage:// Input/Output// d0: exponent/scratch - final is 0// d2: x/0 or 24 for A9// d3: x/scratch - offset ptr into PTENRM array// d4: LEN/Unchanged// d5: 0/ICTR:LAMBDA// d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k))// d7: k-factor/Unchanged// a0: ptr for original operand/final result// a1: x/ptr to PTENRM array// a2: x/x// fp0: float(ILOG)/Unchanged// fp1: x/10^ISCALE// fp2: x/x// F_SCR1:x/x// F_SCR2:Abs(X) with $3fff exponent/Unchanged// L_SCR1:x/x// L_SCR2:first word of X packed/UnchangedA7_str: tstl %d7 //test sign of k bgts k_pos //if pos and > 0, skip this cmpl %d6,%d7 //test k - ILOG blts k_pos //if ILOG >= k, skip this movel %d7,%d6 //if ((k<0) & (ILOG < k)) ILOG = kk_pos: movel %d6,%d0 //calc ILOG + 1 - LEN in d0 addql #1,%d0 //add the 1 subl %d4,%d0 //sub off LEN swap %d5 //use upper word of d5 for LAMBDA clrw %d5 //set it zero initially clrw %d2 //set up d2 for very small case tstl %d0 //test sign of ISCALE bges iscale //if pos, skip next inst addqw #1,%d5 //if neg, set LAMBDA true cmpl #0xffffecd4,%d0 //test iscale <= -4908 bgts no_inf //if false, skip rest addil #24,%d0 //add in 24 to iscale movel #24,%d2 //put 24 in d2 for A9no_inf: negl %d0 //and take abs of ISCALEiscale: fmoves FONE,%fp1 //init fp1 to 1 bfextu USER_FPCR(%a6){#26:#2},%d1 //get initial rmode bits lslw #1,%d1 //put them in bits 2:1 addw %d5,%d1 //add in LAMBDA lslw #1,%d1 //put them in bits 3:1 tstl L_SCR2(%a6) //test sign of original x bges x_pos //if pos, don't set bit 0 addql #1,%d1 //if neg, set bit 0x_pos: leal RBDTBL,%a2 //load rbdtbl base moveb (%a2,%d1),%d3 //load d3 with new rmode lsll #4,%d3 //put bits in proper position fmovel %d3,%fpcr //load bits into fpu lsrl #4,%d3 //put bits in proper position tstb %d3 //decode new rmode for pten table bnes not_rn //if zero, it is RN leal PTENRN,%a1 //load a1 with RN table base bras rmode //exit decodenot_rn: lsrb #1,%d3 //get lsb in carry bccs not_rp //if carry clear, it is RM leal PTENRP,%a1 //load a1 with RP table base bras rmode //exit decodenot_rp: leal PTENRM,%a1 //load a1 with RM table basermode: clrl %d3 //clr table indexe_loop: lsrl #1,%d0 //shift next bit into carry bccs e_next //if zero, skip the mul fmulx (%a1,%d3),%fp1 //mul by 10**(d3_bit_no)e_next: addl #12,%d3 //inc d3 to next pwrten table entry tstl %d0 //test if ISCALE is zero bnes e_loop //if not, loop// A8. Clr INEX; Force RZ.// The operation in A3 above may have set INEX2. // RZ mode is forced for the scaling operation to insure// only one rounding error. The grs bits are collected in // the INEX flag for use in A10.//// Register usage:// Input/Output fmovel #0,%FPSR //clr INEX fmovel #rz_mode,%FPCR //set RZ rounding mode// A9. Scale X -> Y.// The mantissa is scaled to the desired number of significant// digits. The excess digits are collected in INEX2. If mul,// Check d2 for excess 10 exponential value. If not zero, // the iscale value would have caused the pwrten calculation// to overflow. Only a negative iscale can cause this, so// multiply by 10^(d2), which is now only allowed to be 24,// with a multiply by 10^8 and 10^16, which is exact since// 10^24 is exact. If the input was denormalized, we must// create a busy stack frame with the mul command and the
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -