📄 cpu.c
字号:
/* * PowerPC CPU Dependent Source * * Author: Andrew Bray <andy@i-cubed.co.uk> * * COPYRIGHT (c) 1995 by i-cubed ltd. * * To anyone who acknowledges that this file is provided "AS IS" * without any express or implied warranty: * permission to use, copy, modify, and distribute this file * for any purpose is hereby granted without fee, provided that * the above copyright notice and this notice appears in all * copies, and that the name of i-cubed limited not be used in * advertising or publicity pertaining to distribution of the * software without specific, written prior permission. * i-cubed limited makes no representations about the suitability * of this software for any purpose. * * Derived from c/src/exec/cpu/no_cpu/cpu.c: * * COPYRIGHT (c) 1989-1997. * On-Line Applications Research Corporation (OAR). * * The license and distribution terms for this file may be found in * the file LICENSE in this distribution or at * http://www.rtems.com/license/LICENSE. * * $Id: cpu.c,v 1.10.2.2 2004/10/20 08:30:22 ralf Exp $ */#include <bsp.h>#include <rtems/system.h>#include <rtems/score/isr.h>#include <rtems/score/context.h>#include <rtems/score/thread.h>#include <rtems/score/interr.h>#include <rtems/powerpc/cache.h>/* * These are for testing purposes. *//* _CPU_Initialize * * This routine performs processor dependent initialization. * * INPUT PARAMETERS: * cpu_table - CPU table to initialize * thread_dispatch - address of disptaching routine */static void ppc_spurious(int, CPU_Interrupt_frame *);int _CPU_spurious_count = 0;int _CPU_last_spurious = 0;void _CPU_Initialize( rtems_cpu_table *cpu_table, void (*thread_dispatch) /* ignored on this CPU */){#if (PPC_USE_SPRG) int i;#endif#if (PPC_ABI != PPC_ABI_POWEROPEN) register unsigned32 r2 = 0;#if (PPC_ABI != PPC_ABI_GCC27) register unsigned32 r13 = 0; asm ("mr %0,13" : "=r" ((r13)) : "0" ((r13))); _CPU_IRQ_info.Default_r13 = r13;#endif asm ("mr %0,2" : "=r" ((r2)) : "0" ((r2))); _CPU_IRQ_info.Default_r2 = r2;#endif _CPU_IRQ_info.Nest_level = &_ISR_Nest_level; _CPU_IRQ_info.Disable_level = &_Thread_Dispatch_disable_level; /* fill in _CPU_IRQ_info.Vector_table later */#if (PPC_ABI == PPC_ABI_POWEROPEN) _CPU_IRQ_info.Dispatch_r2 = ((unsigned32 *)_Thread_Dispatch)[1];#endif _CPU_IRQ_info.Switch_necessary = &_Context_Switch_necessary; _CPU_IRQ_info.Signal = &_ISR_Signals_to_thread_executing;#if (PPC_USE_SPRG) i = (int)&_CPU_IRQ_info; asm volatile("mtspr 0x113, %0" : "=r" (i) : "0" (i)); /* SPRG 3 */#endif /* * Store Msr Value in the IRQ info structure. */ _CPU_MSR_Value(_CPU_IRQ_info.msr_initial); #if (PPC_USE_SPRG) i = _CPU_IRQ_info.msr_initial; asm volatile("mtspr 0x112, %0" : "=r" (i) : "0" (i)); /* SPRG 2 */#endif _CPU_Table = *cpu_table;}/* * _CPU_Initialize_vectors() * * Support routine to initialize the RTEMS vector table after it is allocated. * * PowerPC Specific Information: * * Complete initialization since the table is now allocated. */ void _CPU_Initialize_vectors(void){ int i; proc_ptr handler = (proc_ptr)ppc_spurious; _CPU_IRQ_info.Vector_table = _ISR_Vector_table; if ( _CPU_Table.spurious_handler ) handler = (proc_ptr)_CPU_Table.spurious_handler; for (i = 0; i < PPC_INTERRUPT_MAX; i++) _ISR_Vector_table[i] = handler;} /*PAGE * * _CPU_ISR_Calculate_level * * The PowerPC puts its interrupt enable status in the MSR register * which also contains things like endianness control. To be more * awkward, the layout varies from processor to processor. This * is why it was necessary to adopt a scheme which allowed the user * to specify specifically which interrupt sources were enabled. */ unsigned32 _CPU_ISR_Calculate_level( unsigned32 new_level){ register unsigned32 new_msr = 0; /* * Set the critical interrupt enable bit */#if (PPC_HAS_RFCI) if ( !(new_level & PPC_INTERRUPT_LEVEL_CE) ) new_msr |= PPC_MSR_CE;#endif if ( !(new_level & PPC_INTERRUPT_LEVEL_ME) ) new_msr |= PPC_MSR_ME; if ( !(new_level & PPC_INTERRUPT_LEVEL_EE) ) new_msr |= PPC_MSR_EE; return new_msr;}/*PAGE * * _CPU_ISR_Set_level * * This routine sets the requested level in the MSR. */void _CPU_ISR_Set_level( unsigned32 new_level){ register unsigned32 tmp = 0; register unsigned32 new_msr; new_msr = _CPU_ISR_Calculate_level( new_level ); asm volatile ( "mfmsr %0; andc %0,%0,%1; and %2, %2, %1; or %0, %0, %2; mtmsr %0" : "=&r" ((tmp)) : "r" ((PPC_MSR_DISABLE_MASK)), "r" ((new_msr)), "0" ((tmp)) );}/*PAGE * * _CPU_ISR_Get_level * * This routine gets the current interrupt level from the MSR and * converts it to an RTEMS interrupt level. */unsigned32 _CPU_ISR_Get_level( void ){ unsigned32 level = 0; unsigned32 msr; asm volatile("mfmsr %0" : "=r" ((msr))); msr &= PPC_MSR_DISABLE_MASK; /* * Set the critical interrupt enable bit */#if (PPC_HAS_RFCI) if ( !(msr & PPC_MSR_CE) ) level |= PPC_INTERRUPT_LEVEL_CE;#endif if ( !(msr & PPC_MSR_ME) ) level |= PPC_INTERRUPT_LEVEL_ME; if ( !(msr & PPC_MSR_EE) ) level |= PPC_INTERRUPT_LEVEL_EE; return level;}/*PAGE * * _CPU_Context_Initialize */#if (PPC_ABI == PPC_ABI_POWEROPEN)#define CPU_MINIMUM_STACK_FRAME_SIZE 56#else /* PPC_ABI_SVR4 or PPC_ABI_EABI */#define CPU_MINIMUM_STACK_FRAME_SIZE 8#endifvoid _CPU_Context_Initialize( Context_Control *the_context, unsigned32 *stack_base, unsigned32 size, unsigned32 new_level, void *entry_point, boolean is_fp){ unsigned32 msr_value; unsigned32 sp; sp = (unsigned32)stack_base + size - CPU_MINIMUM_STACK_FRAME_SIZE; *((unsigned32 *)sp) = 0; the_context->gpr1 = sp; the_context->msr = _CPU_ISR_Calculate_level( new_level ); /* * The FP bit of the MSR should only be enabled if this is a floating * point task. Unfortunately, the vfprintf_r routine in newlib * ends up pushing a floating point register regardless of whether or * not a floating point number is being printed. Serious restructuring * of vfprintf.c will be required to avoid this behavior. At this * time (7 July 1997), this restructuring is not being done. */ /*if ( is_fp ) */ the_context->msr |= PPC_MSR_FP; /* * Calculate the task's MSR value: * * + Set the exception prefix bit to point to the exception table * + Force the RI bit * + Use the DR and IR bits */ _CPU_MSR_Value( msr_value ); the_context->msr |= (msr_value & PPC_MSR_EP); the_context->msr |= PPC_MSR_RI; the_context->msr |= msr_value & (PPC_MSR_DR|PPC_MSR_IR);#if (PPC_ABI == PPC_ABI_POWEROPEN) { unsigned32 *desc = (unsigned32 *)entry_point; the_context->pc = desc[0]; the_context->gpr2 = desc[1]; }#endif#if (PPC_ABI == PPC_ABI_SVR4) { unsigned r13 = 0; asm volatile ("mr %0, 13" : "=r" ((r13))); the_context->pc = (unsigned32)entry_point; the_context->gpr13 = r13; }#endif#if (PPC_ABI == PPC_ABI_EABI) { unsigned32 r2 = 0; unsigned r13 = 0; asm volatile ("mr %0,2; mr %1,13" : "=r" ((r2)), "=r" ((r13))); the_context->pc = (unsigned32)entry_point; the_context->gpr2 = r2; the_context->gpr13 = r13; }#endif}/* _CPU_ISR_install_vector * * This kernel routine installs the RTEMS handler for the * specified vector. * * Input parameters: * vector - interrupt vector number * old_handler - former ISR for this vector number * new_handler - replacement ISR for this vector number * * Output parameters: NONE * */void _CPU_ISR_install_vector( unsigned32 vector, proc_ptr new_handler, proc_ptr *old_handler){ proc_ptr ignored; *old_handler = _ISR_Vector_table[ vector ]; /* * If the interrupt vector table is a table of pointer to isr entry * points, then we need to install the appropriate RTEMS interrupt * handler for this vector number. */ /* * Install the wrapper so this ISR can be invoked properly. */ if (_CPU_Table.exceptions_in_RAM) _CPU_ISR_install_raw_handler( vector, _ISR_Handler, &ignored ); /* * We put the actual user ISR address in '_ISR_vector_table'. This will * be used by the _ISR_Handler so the user gets control. */ _ISR_Vector_table[ vector ] = new_handler ? (ISR_Handler_entry)new_handler : _CPU_Table.spurious_handler ? (ISR_Handler_entry)_CPU_Table.spurious_handler : (ISR_Handler_entry)ppc_spurious;}/*PAGE * * _CPU_Install_interrupt_stack */void _CPU_Install_interrupt_stack( void ){#if (PPC_ABI == PPC_ABI_POWEROPEN || PPC_ABI == PPC_ABI_GCC27) _CPU_IRQ_info.Stack = _CPU_Interrupt_stack_high - 56;#else _CPU_IRQ_info.Stack = _CPU_Interrupt_stack_high - 8;#endif}/* Handle a spurious interrupt */static void ppc_spurious(int v, CPU_Interrupt_frame *i){#if 0 printf("Spurious interrupt on vector %d from %08.8x\n", v, i->pc);#endif#if defined(ppc403) || defined(ppc405) if (v == PPC_IRQ_EXTERNAL) { register int r = 0; asm volatile("mtdcr 0x42, %0" : "=&r" ((r)) : "0" ((r))); /* EXIER */ } else if (v == PPC_IRQ_PIT) { register int r = 0x08000000; asm volatile("mtspr 0x3d8, %0" : "=&r" ((r)) : "0" ((r))); /* TSR */ } else if (v == PPC_IRQ_FIT) { register int r = 0x04000000; asm volatile("mtspr 0x3d8, %0" : "=&r" ((r)) : "0" ((r))); /* TSR */ }#endif ++_CPU_spurious_count; _CPU_last_spurious = v;}void _CPU_Fatal_error(unsigned32 _error){ asm volatile ("mr 3, %0" : : "r" ((_error))); asm volatile ("tweq 5,5"); asm volatile ("li 0,0; mtmsr 0"); while (1) ;}#define PPC_SYNCHRONOUS_TRAP_BIT_MASK 0x100#define PPC_ASYNCHRONOUS_TRAP( _trap ) (_trap)#define PPC_SYNCHRONOUS_TRAP ( _trap ) ((_trap)+PPC_SYNCHRONOUS_TRAP_BIT_MASK)#define PPC_REAL_TRAP_NUMBER ( _trap ) ((_trap)%PPC_SYNCHRONOUS_TRAP_BIT_MASK)const CPU_Trap_table_entry _CPU_Trap_slot_template = {#if (PPC_ABI == PPC_ABI_POWEROPEN || PPC_ABI == PPC_ABI_GCC27)#error " Vector install not tested."#if (PPC_HAS_FPU)#error " Vector install not tested." 0x9421feb0, /* stwu r1, -(20*4 + 18*8 + IP_END)(r1) */#else#error " Vector install not tested." 0x9421ff40, /* stwu r1, -(20*4 + IP_END)(r1) */#endif#else 0x9421ff90, /* stwu r1, -(IP_END)(r1) */#endif 0x90010008, /* stw %r0, IP_0(%r1) */ 0x38000000, /* li %r0, PPC_IRQ */ 0x48000002 /* ba PROC (_ISR_Handler) */};#if defined(mpc860) || defined(mpc821)const CPU_Trap_table_entry _CPU_Trap_slot_template_m860 = { 0x7c0803ac, /* mtlr %r0 */ 0x81210028, /* lwz %r9, IP_9(%r1) */ 0x38000000, /* li %r0, PPC_IRQ */ 0x48000002 /* b PROC (_ISR_Handler) */};#endif /* mpc860 */unsigned32 ppc_exception_vector_addr( unsigned32 vector);/*PAGE
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -