📄 uipc_socket2.c
字号:
/* * This file has undergone several changes to reflect the * differences between the RTEMS and FreeBSD kernels. *//* * Copyright (c) 1982, 1986, 1988, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 * $Id: uipc_socket2.c,v 1.2 2003/01/03 18:09:25 joel Exp $ */#include <sys/param.h>#include <sys/systm.h>#include <sys/kernel.h>#include <sys/proc.h>#include <sys/file.h>#include <sys/buf.h>#include <sys/malloc.h>#include <sys/mbuf.h>#include <sys/protosw.h>#include <sys/stat.h>#include <sys/socket.h>#include <sys/socketvar.h>#include <sys/signalvar.h>#include <sys/sysctl.h>/* * Primitive routines for operating on sockets and socket buffers */u_long sb_max = SB_MAX; /* XXX should be static */SYSCTL_INT(_kern, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW, &sb_max, 0, "");static u_long sb_efficiency = 8; /* parameter for sbreserve() */SYSCTL_INT(_kern, OID_AUTO, sockbuf_waste_factor, CTLFLAG_RW, &sb_efficiency, 0, "");/* * Procedures to manipulate state flags of socket * and do appropriate wakeups. Normal sequence from the * active (originating) side is that soisconnecting() is * called during processing of connect() call, * resulting in an eventual call to soisconnected() if/when the * connection is established. When the connection is torn down * soisdisconnecting() is called during processing of disconnect() call, * and soisdisconnected() is called when the connection to the peer * is totally severed. The semantics of these routines are such that * connectionless protocols can call soisconnected() and soisdisconnected() * only, bypassing the in-progress calls when setting up a ``connection'' * takes no time. * * From the passive side, a socket is created with * two queues of sockets: so_q0 for connections in progress * and so_q for connections already made and awaiting user acceptance. * As a protocol is preparing incoming connections, it creates a socket * structure queued on so_q0 by calling sonewconn(). When the connection * is established, soisconnected() is called, and transfers the * socket structure to so_q, making it available to accept(). * * If a socket is closed with sockets on either * so_q0 or so_q, these sockets are dropped. * * If higher level protocols are implemented in * the kernel, the wakeups done here will sometimes * cause software-interrupt process scheduling. */voidsoisconnecting(so) register struct socket *so;{ so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); so->so_state |= SS_ISCONNECTING;}voidsoisconnected(so) register struct socket *so;{ register struct socket *head = so->so_head; so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); so->so_state |= SS_ISCONNECTED; if (head && (so->so_state & SS_INCOMP)) { TAILQ_REMOVE(&head->so_incomp, so, so_list); head->so_incqlen--; so->so_state &= ~SS_INCOMP; TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); so->so_state |= SS_COMP; sorwakeup(head); soconnwakeup(head); } else { soconnwakeup(so); sorwakeup(so); sowwakeup(so); }}voidsoisdisconnecting(so) register struct socket *so;{ so->so_state &= ~SS_ISCONNECTING; so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); soconnwakeup(so); sowwakeup(so); sorwakeup(so);}voidsoisdisconnected(so) register struct socket *so;{ so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE); soconnwakeup(so); sowwakeup(so); sorwakeup(so);}/* * Return a random connection that hasn't been serviced yet and * is eligible for discard. There is a one in qlen chance that * we will return a null, saying that there are no dropable * requests. In this case, the protocol specific code should drop * the new request. This insures fairness. * * This may be used in conjunction with protocol specific queue * congestion routines. */struct socket *sodropablereq(head) register struct socket *head;{ register struct socket *so; unsigned int i, j, qlen, m; static int rnd; static long old_mono_secs; static unsigned int cur_cnt, old_cnt; if ((i = (m = rtems_bsdnet_seconds_since_boot()) - old_mono_secs) != 0) { old_mono_secs = m; old_cnt = cur_cnt / i; cur_cnt = 0; } so = TAILQ_FIRST(&head->so_incomp); if (!so) return (so); qlen = head->so_incqlen; if (++cur_cnt > qlen || old_cnt > qlen) { rnd = (314159 * rnd + 66329) & 0xffff; j = ((qlen + 1) * rnd) >> 16; while (j-- && so) so = TAILQ_NEXT(so, so_list); } return (so);}/* * When an attempt at a new connection is noted on a socket * which accepts connections, sonewconn is called. If the * connection is possible (subject to space constraints, etc.) * then we allocate a new structure, propoerly linked into the * data structure of the original socket, and return this. * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. * * Currently, sonewconn() is defined as sonewconn1() in socketvar.h * to catch calls that are missing the (new) second parameter. */struct socket *sonewconn1(head, connstatus) register struct socket *head; int connstatus;{ register struct socket *so; if (head->so_qlen > 3 * head->so_qlimit / 2) return ((struct socket *)0); MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT); if (so == NULL) return ((struct socket *)0); bzero((caddr_t)so, sizeof(*so)); so->so_head = head; so->so_type = head->so_type; so->so_options = head->so_options &~ SO_ACCEPTCONN; so->so_linger = head->so_linger; so->so_state = head->so_state | SS_NOFDREF; so->so_proto = head->so_proto; so->so_timeo = head->so_timeo; so->so_pgid = head->so_pgid; so->so_uid = head->so_uid; (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat); if (connstatus) { TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); so->so_state |= SS_COMP; } else { TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); so->so_state |= SS_INCOMP; head->so_incqlen++; } head->so_qlen++; if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0)) { if (so->so_state & SS_COMP) { TAILQ_REMOVE(&head->so_comp, so, so_list); } else { TAILQ_REMOVE(&head->so_incomp, so, so_list); head->so_incqlen--; } head->so_qlen--; (void) free((caddr_t)so, M_SOCKET); return ((struct socket *)0); } if (connstatus) { sorwakeup(head); soconnwakeup(head); so->so_state |= connstatus; } return (so);}/* * Socantsendmore indicates that no more data will be sent on the * socket; it would normally be applied to a socket when the user * informs the system that no more data is to be sent, by the protocol * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data * will be received, and will normally be applied to the socket by a * protocol when it detects that the peer will send no more data. * Data queued for reading in the socket may yet be read. */voidsocantsendmore(so) struct socket *so;{ so->so_state |= SS_CANTSENDMORE; sowwakeup(so);}voidsocantrcvmore(so) struct socket *so;{ so->so_state |= SS_CANTRCVMORE; sorwakeup(so);}/* * Socket buffer (struct sockbuf) utility routines. * * Each socket contains two socket buffers: one for sending data and * one for receiving data. Each buffer contains a queue of mbufs, * information about the number of mbufs and amount of data in the * queue, and other fields allowing select() statements and notification * on data availability to be implemented. * * Data stored in a socket buffer is maintained as a list of records. * Each record is a list of mbufs chained together with the m_next * field. Records are chained together with the m_nextpkt field. The upper * level routine soreceive() expects the following conventions to be * observed when placing information in the receive buffer: * * 1. If the protocol requires each message be preceded by the sender's * name, then a record containing that name must be present before * any associated data (mbuf's must be of type MT_SONAME). * 2. If the protocol supports the exchange of ``access rights'' (really * just additional data associated with the message), and there are * ``rights'' to be received, then a record containing this data * should be present (mbuf's must be of type MT_RIGHTS). * 3. If a name or rights record exists, then it must be followed by * a data record, perhaps of zero length. * * Before using a new socket structure it is first necessary to reserve * buffer space to the socket, by calling sbreserve(). This should commit * some of the available buffer space in the system buffer pool for the * socket (currently, it does nothing but enforce limits). The space * should be released by calling sbrelease() when the socket is destroyed. */intsoreserve(so, sndcc, rcvcc) register struct socket *so; u_long sndcc, rcvcc;{ if (sbreserve(&so->so_snd, sndcc) == 0) goto bad; if (sbreserve(&so->so_rcv, rcvcc) == 0) goto bad2; if (so->so_rcv.sb_lowat == 0) so->so_rcv.sb_lowat = 1; if (so->so_snd.sb_lowat == 0) so->so_snd.sb_lowat = MCLBYTES; if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) so->so_snd.sb_lowat = so->so_snd.sb_hiwat; return (0);bad2: sbrelease(&so->so_snd);bad: return (ENOBUFS);}/* * Allot mbufs to a sockbuf. * Attempt to scale mbmax so that mbcnt doesn't become limiting * if buffering efficiency is near the normal case. */intsbreserve(sb, cc) struct sockbuf *sb; u_long cc;{ if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES)) return (0); sb->sb_hiwat = cc; sb->sb_mbmax = min(cc * sb_efficiency, sb_max); if (sb->sb_lowat > sb->sb_hiwat) sb->sb_lowat = sb->sb_hiwat; return (1);}/* * Free mbufs held by a socket, and reserved mbuf space. */voidsbrelease(sb) struct sockbuf *sb;{ sbflush(sb); sb->sb_hiwat = sb->sb_mbmax = 0;}/* * Routines to add and remove * data from an mbuf queue. * * The routines sbappend() or sbappendrecord() are normally called to * append new mbufs to a socket buffer, after checking that adequate * space is available, comparing the function sbspace() with the amount * of data to be added. sbappendrecord() differs from sbappend() in * that data supplied is treated as the beginning of a new record. * To place a sender's address, optional access rights, and data in a * socket receive buffer, sbappendaddr() should be used. To place * access rights and data in a socket receive buffer, sbappendrights() * should be used. In either case, the new data begins a new record. * Note that unlike sbappend() and sbappendrecord(), these routines check * for the caller that there will be enough space to store the data. * Each fails if there is not enough space, or if it cannot find mbufs * to store additional information in. * * Reliable protocols may use the socket send buffer to hold data * awaiting acknowledgement. Data is normally copied from a socket * send buffer in a protocol with m_copy for output to a peer, * and then removing the data from the socket buffer with sbdrop() * or sbdroprecord() when the data is acknowledged by the peer. *//* * Append mbuf chain m to the last record in the * socket buffer sb. The additional space associated * the mbuf chain is recorded in sb. Empty mbufs are * discarded and mbufs are compacted where possible. */voidsbappend(sb, m) struct sockbuf *sb; struct mbuf *m;{ register struct mbuf *n; if (m == 0) return; n = sb->sb_mb; if (n) { while (n->m_nextpkt) n = n->m_nextpkt; do { if (n->m_flags & M_EOR) { sbappendrecord(sb, m); /* XXXXXX!!!! */ return; } } while (n->m_next && (n = n->m_next)); } sbcompress(sb, m, n);}#ifdef SOCKBUF_DEBUGvoidsbcheck(sb) register struct sockbuf *sb;{ register struct mbuf *m; register int len = 0, mbcnt = 0; for (m = sb->sb_mb; m; m = m->m_next) { len += m->m_len; mbcnt += MSIZE; if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ mbcnt += m->m_ext.ext_size; if (m->m_nextpkt) panic("sbcheck nextpkt"); } if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc, mbcnt, sb->sb_mbcnt); panic("sbcheck"); }}#endif/* * As above, except the mbuf chain * begins a new record. */voidsbappendrecord(sb, m0) register struct sockbuf *sb; register struct mbuf *m0;{ register struct mbuf *m; if (m0 == 0) return; m = sb->sb_mb; if (m) while (m->m_nextpkt) m = m->m_nextpkt; /* * Put the first mbuf on the queue. * Note this permits zero length records. */ sballoc(sb, m0); if (m) m->m_nextpkt = m0; else sb->sb_mb = m0; m = m0->m_next; m0->m_next = 0; if (m && (m0->m_flags & M_EOR)) { m0->m_flags &= ~M_EOR; m->m_flags |= M_EOR; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -