📄 cpu_asm.s
字号:
/* cpu_asm.s * * This file contains the basic algorithms for all assembly code used * in an specific CPU port of RTEMS. These algorithms must be implemented * in assembly language. * * COPYRIGHT (c) 1989-1999. * On-Line Applications Research Corporation (OAR). * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.rtems.com/license/LICENSE. * * Ported to ERC32 implementation of the SPARC by On-Line Applications * Research Corporation (OAR) under contract to the European Space * Agency (ESA). * * ERC32 modifications of respective RTEMS file: COPYRIGHT (c) 1995. * European Space Agency. * * $Id: cpu_asm.S,v 1.8.2.3 2005/10/05 19:30:18 joel Exp $ */#include <asm.h>/* * void _CPU_Context_initialize_fp( * void *fp_context_ptr * ) * * This routine is responsible for initializing the FP context * at *fp_context_ptr. All registers and FSR in the FP context * are initailized to 0. * */ .align 4 PUBLIC(_CPU_Context_initialize_fp)SYM(_CPU_Context_initialize_fp): set 0, %l1fpcontextinit: std %g0, [%o0] ! write register fields of the FP context add %l1, 1, %l1 cmp %l1, 16 bne fpcontextinit add %o0, 8, %o0 retl st %g0, [%o0] ! write fsr field of the FP context /* * void _CPU_Context_save_fp( * void **fp_context_ptr * ) * * This routine is responsible for saving the FP context * at *fp_context_ptr. If the point to load the FP context * from is changed then the pointer is modified by this routine. * * NOTE: See the README in this directory for information on the * management of the "EF" bit in the PSR. */ .align 4 PUBLIC(_CPU_Context_save_fp)SYM(_CPU_Context_save_fp): save %sp, -CPU_MINIMUM_STACK_FRAME_SIZE, %sp /* * The following enables the floating point unit. */ mov %psr, %l0 sethi %hi(SPARC_PSR_EF_MASK), %l1 or %l1, %lo(SPARC_PSR_EF_MASK), %l1 or %l0, %l1, %l0 mov %l0, %psr ! **** ENABLE FLOAT ACCESS **** nop; nop; nop; ! Need three nops before EF is ld [%i0], %l0 ! active due to pipeline delay!!! std %f0, [%l0 + FO_F1_OFFSET] std %f2, [%l0 + F2_F3_OFFSET] std %f4, [%l0 + F4_F5_OFFSET] std %f6, [%l0 + F6_F7_OFFSET] std %f8, [%l0 + F8_F9_OFFSET] std %f10, [%l0 + F1O_F11_OFFSET] std %f12, [%l0 + F12_F13_OFFSET] std %f14, [%l0 + F14_F15_OFFSET] std %f16, [%l0 + F16_F17_OFFSET] std %f18, [%l0 + F18_F19_OFFSET] std %f20, [%l0 + F2O_F21_OFFSET] std %f22, [%l0 + F22_F23_OFFSET] std %f24, [%l0 + F24_F25_OFFSET] std %f26, [%l0 + F26_F27_OFFSET] std %f28, [%l0 + F28_F29_OFFSET] std %f30, [%l0 + F3O_F31_OFFSET] st %fsr, [%l0 + FSR_OFFSET] ret restore/* * void _CPU_Context_restore_fp( * void **fp_context_ptr * ) * * This routine is responsible for restoring the FP context * at *fp_context_ptr. If the point to load the FP context * from is changed then the pointer is modified by this routine. * * NOTE: See the README in this directory for information on the * management of the "EF" bit in the PSR. */ .align 4 PUBLIC(_CPU_Context_restore_fp)SYM(_CPU_Context_restore_fp): save %sp, -CPU_MINIMUM_STACK_FRAME_SIZE , %sp /* * The following enables the floating point unit. */ mov %psr, %l0 sethi %hi(SPARC_PSR_EF_MASK), %l1 or %l1, %lo(SPARC_PSR_EF_MASK), %l1 or %l0, %l1, %l0 mov %l0, %psr ! **** ENABLE FLOAT ACCESS **** nop; nop; nop; ! Need three nops before EF is ld [%i0], %l0 ! active due to pipeline delay!!! ldd [%l0 + FO_F1_OFFSET], %f0 ldd [%l0 + F2_F3_OFFSET], %f2 ldd [%l0 + F4_F5_OFFSET], %f4 ldd [%l0 + F6_F7_OFFSET], %f6 ldd [%l0 + F8_F9_OFFSET], %f8 ldd [%l0 + F1O_F11_OFFSET], %f10 ldd [%l0 + F12_F13_OFFSET], %f12 ldd [%l0 + F14_F15_OFFSET], %f14 ldd [%l0 + F16_F17_OFFSET], %f16 ldd [%l0 + F18_F19_OFFSET], %f18 ldd [%l0 + F2O_F21_OFFSET], %f20 ldd [%l0 + F22_F23_OFFSET], %f22 ldd [%l0 + F24_F25_OFFSET], %f24 ldd [%l0 + F26_F27_OFFSET], %f26 ldd [%l0 + F28_F29_OFFSET], %f28 ldd [%l0 + F3O_F31_OFFSET], %f30 ld [%l0 + FSR_OFFSET], %fsr ret restore/* * void _CPU_Context_switch( * Context_Control *run, * Context_Control *heir * ) * * This routine performs a normal non-FP context switch. */ .align 4 PUBLIC(_CPU_Context_switch)SYM(_CPU_Context_switch): ! skip g0 st %g1, [%o0 + G1_OFFSET] ! save the global registers std %g2, [%o0 + G2_OFFSET] std %g4, [%o0 + G4_OFFSET] std %g6, [%o0 + G6_OFFSET] std %l0, [%o0 + L0_OFFSET] ! save the local registers std %l2, [%o0 + L2_OFFSET] std %l4, [%o0 + L4_OFFSET] std %l6, [%o0 + L6_OFFSET] std %i0, [%o0 + I0_OFFSET] ! save the input registers std %i2, [%o0 + I2_OFFSET] std %i4, [%o0 + I4_OFFSET] std %i6, [%o0 + I6_FP_OFFSET] std %o0, [%o0 + O0_OFFSET] ! save the output registers std %o2, [%o0 + O2_OFFSET] std %o4, [%o0 + O4_OFFSET] std %o6, [%o0 + O6_SP_OFFSET] rd %psr, %o2 st %o2, [%o0 + PSR_OFFSET] ! save status register /* * This is entered from _CPU_Context_restore with: * o1 = context to restore * o2 = psr */ PUBLIC(_CPU_Context_restore_heir)SYM(_CPU_Context_restore_heir): /* * Flush all windows with valid contents except the current one. * In examining the set register windows, one may logically divide * the windows into sets (some of which may be empty) based on their * current status: * * + current (i.e. in use), * + used (i.e. a restore would not trap) * + invalid (i.e. 1 in corresponding bit in WIM) * + unused * * Either the used or unused set of windows may be empty. * * NOTE: We assume only one bit is set in the WIM at a time. * * Given a CWP of 5 and a WIM of 0x1, the registers are divided * into sets as follows: * * + 0 - invalid * + 1-4 - unused * + 5 - current * + 6-7 - used * * In this case, we only would save the used windows -- 6 and 7. * * Traps are disabled for the same logical period as in a * flush all windows trap handler. * * Register Usage while saving the windows: * g1 = current PSR * g2 = current wim * g3 = CWP * g4 = wim scratch * g5 = scratch */ ld [%o1 + PSR_OFFSET], %g1 ! g1 = saved psr and %o2, SPARC_PSR_CWP_MASK, %g3 ! g3 = CWP ! g1 = psr w/o cwp andn %g1, SPARC_PSR_ET_MASK | SPARC_PSR_CWP_MASK, %g1 or %g1, %g3, %g1 ! g1 = heirs psr mov %g1, %psr ! restore status register and ! **** DISABLE TRAPS **** mov %wim, %g2 ! g2 = wim mov 1, %g4 sll %g4, %g3, %g4 ! g4 = WIM mask for CW invalidsave_frame_loop: sll %g4, 1, %g5 ! rotate the "wim" left 1 srl %g4, SPARC_NUMBER_OF_REGISTER_WINDOWS - 1, %g4 or %g4, %g5, %g4 ! g4 = wim if we do one restore /* * If a restore would not underflow, then continue. */ andcc %g4, %g2, %g0 ! Any windows to flush? bnz done_flushing ! No, then continue nop restore ! back one window /* * Now save the window just as if we overflowed to it. */ std %l0, [%sp + CPU_STACK_FRAME_L0_OFFSET] std %l2, [%sp + CPU_STACK_FRAME_L2_OFFSET] std %l4, [%sp + CPU_STACK_FRAME_L4_OFFSET] std %l6, [%sp + CPU_STACK_FRAME_L6_OFFSET] std %i0, [%sp + CPU_STACK_FRAME_I0_OFFSET] std %i2, [%sp + CPU_STACK_FRAME_I2_OFFSET] std %i4, [%sp + CPU_STACK_FRAME_I4_OFFSET] std %i6, [%sp + CPU_STACK_FRAME_I6_FP_OFFSET] ba save_frame_loop nopdone_flushing: add %g3, 1, %g3 ! calculate desired WIM and %g3, SPARC_NUMBER_OF_REGISTER_WINDOWS - 1, %g3 mov 1, %g4 sll %g4, %g3, %g4 ! g4 = new WIM mov %g4, %wim or %g1, SPARC_PSR_ET_MASK, %g1 mov %g1, %psr ! **** ENABLE TRAPS **** ! and restore CWP nop nop nop ! skip g0 ld [%o1 + G1_OFFSET], %g1 ! restore the global registers ldd [%o1 + G2_OFFSET], %g2 ldd [%o1 + G4_OFFSET], %g4 ldd [%o1 + G6_OFFSET], %g6 ldd [%o1 + L0_OFFSET], %l0 ! restore the local registers ldd [%o1 + L2_OFFSET], %l2 ldd [%o1 + L4_OFFSET], %l4 ldd [%o1 + L6_OFFSET], %l6 ldd [%o1 + I0_OFFSET], %i0 ! restore the output registers ldd [%o1 + I2_OFFSET], %i2 ldd [%o1 + I4_OFFSET], %i4 ldd [%o1 + I6_FP_OFFSET], %i6 ldd [%o1 + O2_OFFSET], %o2 ! restore the output registers ldd [%o1 + O4_OFFSET], %o4 ldd [%o1 + O6_SP_OFFSET], %o6 ! do o0/o1 last to avoid destroying heir context pointer ldd [%o1 + O0_OFFSET], %o0 ! overwrite heir pointer jmp %o7 + 8 ! return nop ! delay slot/* * void _CPU_Context_restore( * Context_Control *new_context * ) * * This routine is generally used only to perform restart self. * * NOTE: It is unnecessary to reload some registers. */ .align 4 PUBLIC(_CPU_Context_restore)SYM(_CPU_Context_restore): save %sp, -CPU_MINIMUM_STACK_FRAME_SIZE, %sp rd %psr, %o2 ba SYM(_CPU_Context_restore_heir) mov %i0, %o1 ! in the delay slot/* * void _ISR_Handler() * * This routine provides the RTEMS interrupt management. * * We enter this handler from the 4 instructions in the trap table with * the following registers assumed to be set as shown: * * l0 = PSR * l1 = PC * l2 = nPC * l3 = trap type * * NOTE: By an executive defined convention, trap type is between 0 and 255 if * it is an asynchonous trap and 256 and 511 if it is synchronous. */ .align 4 PUBLIC(_ISR_Handler)SYM(_ISR_Handler): /* * Fix the return address for synchronous traps. */ andcc %l3, SPARC_SYNCHRONOUS_TRAP_BIT_MASK, %g0 ! Is this a synchronous trap? be,a win_ovflow ! No, then skip the adjustment nop ! DELAY mov %l1, %l6 ! save trapped pc for debug info mov %l2, %l1 ! do not return to the instruction add %l2, 4, %l2 ! indicatedwin_ovflow: /* * Save the globals this block uses. * * These registers are not restored from the locals. Their contents * are saved directly from the locals into the ISF below. */ mov %g4, %l4 ! save the globals this block uses mov %g5, %l5 /* * When at a "window overflow" trap, (wim == (1 << cwp)). * If we get here like that, then process a window overflow. */ rd %wim, %g4 srl %g4, %l0, %g5 ! g5 = win >> cwp ; shift count and CWP ! are LS 5 bits ; how convenient :) cmp %g5, 1 ! Is this an invalid window? bne dont_do_the_window ! No, then skip all this stuff ! we are using the delay slot /* * The following is same as a 1 position right rotate of WIM */ srl %g4, 1, %g5 ! g5 = WIM >> 1 sll %g4, SPARC_NUMBER_OF_REGISTER_WINDOWS-1 , %g4 ! g4 = WIM << (Number Windows - 1) or %g4, %g5, %g4 ! g4 = (WIM >> 1) | ! (WIM << (Number Windows - 1)) /* * At this point: * * g4 = the new WIM * g5 is free */ /* * Since we are tinkering with the register windows, we need to * make sure that all the required information is in global registers. */ save ! Save into the window wr %g4, 0, %wim ! WIM = new WIM nop ! delay slots nop nop /*
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -