📄 kron.m
字号:
function Q = kron(P1,P2)
% KRON -- Kronecker product of matrix polynomials
%
% Q = kron(P1,P2)
%
% To visualize this, it helps to think of P1, P2 as matrices with
% polynomial entries, rather than as polynomials with matrix coefficients.
% Copyright (c) 2004 by Fritz Keinert (keinert@iastate.edu),
% Dept. of Mathematics, Iowa State University, Ames, IA 50011.
% This software may be freely used and distributed for non-commercial
% purposes, provided this copyright statement is preserved, and
% appropriate credit for its use is given.
%
% Last update: Feb 20, 2004
if (isa(P1,'mpoly'))
P1 = trim(P1);
if (isa(P2,'mpoly'))
P2 = trim(P2);
[p1,p2,p3] = size(P1.coef);
[q1,q2,q3] = size(P2.coef);
Qmin = P1.min + P2.min;
P1max = get(P1,'max');
P2max = get(P2,'max');
Qmax = P1max + P2max;
Q = mpoly(zeros(p1*q1,p2*q2,Qmax-Qmin+1),Qmin);
if (isa(P1,'sym') | isa(P2,'sym'))
Q = sym(Q);
end
for k = Qmin:Qmax
jmin = max(P2.min,k-P1max);
jmax = min(P2max,k-P1.min);
% Q{k} = kron(P1{k-jmin},P2{jmin});
Q.coef(:,:,k-Qmin+1) = kron(P1.coef(:,:,k-jmin-P1.min+1),...
P2.coef(:,:,jmin-P2.min+1));
for j = jmin+1:jmax
% Q{k} = Q{k} + kron(P1{k-j},P2{j});
Q.coef(:,:,k-Qmin+1) = Q.coef(:,:,k-Qmin+1) + ...
kron(P1.coef(:,:,k-j-P1.min+1),P2.coef(:,:,j-P2.min+1));
end
end
else
% P2 is a matrix, not a matrix polynomial
Q = P1;
if (~isa(P1,'sym') & isa(P2,'sym'))
Q = sym(Q);
end
Qmax = get(Q,'max');
for k = Q.min:Qmax
% Q{k} = kron(P1{k},P2);
Q.coef(:,:,k-Q.min+1) = kron(P1.coef(:,:,k-P1.min+1),P2);
end
end
else
% P1 is a matrix, not a matrix polynomial
P2 = trim(P2);
Q = P2;
if (isa(P1,'sym') & ~isa(P2,'sym'))
Q = sym(Q);
end
Qmax = get(Q,'max');
for k = Q.min:Qmax
% Q{k} = kron(P1,P2{k});
Q.coef(:,:,k-Q.min+1) = kron(P1,P2.coef(k-P2.min+1));
end
end
[type,m,r] = match_type(P1,P2);
Q = set(Q,'type',type,'m',m,'r',r);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -