📄 algo7-7.cpp
字号:
// algo7-7.cpp 实现算法7.16的程序
#define MAX_NAME 5 // 顶点字符串的最大长度+1
#define MAX_INFO 20 // 相关信息字符串的最大长度+1
typedef int VRType;
typedef char VertexType[MAX_NAME];
typedef char InfoType;
#include"c1.h"
#include"c7-1.h"
#include"bo7-1.cpp"
typedef int PathMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM][MAX_VERTEX_NUM];
typedef int DistancMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];
void ShortestPath_FLOYD(MGraph G,PathMatrix &P,DistancMatrix &D)
{ // 用Floyd算法求有向网G中各对顶点v和w之间的最短路径P[v][w]及其
// 带权长度D[v][w]。若P[v][w][u]为TRUE,则u是从v到w当前求得最短
// 路径上的顶点。算法7.16
int u,v,w,i;
for(v=0;v<G.vexnum;v++) // 各对结点之间初始已知路径及距离
for(w=0;w<G.vexnum;w++)
{
D[v][w]=G.arcs[v][w].adj;
for(u=0;u<G.vexnum;u++)
P[v][w][u]=FALSE;
if(D[v][w]<INFINITY) // 从v到w有直接路径
{
P[v][w][v]=TRUE;
P[v][w][w]=TRUE;
}
}
for(u=0;u<G.vexnum;u++)
for(v=0;v<G.vexnum;v++)
for(w=0;w<G.vexnum;w++)
if(D[v][u]+D[u][w]<D[v][w]) // 从v经u到w的一条路径更短
{
D[v][w]=D[v][u]+D[u][w];
for(i=0;i<G.vexnum;i++)
P[v][w][i]=P[v][u][i]||P[u][w][i];
}
}
void main()
{
MGraph g;
int i,j,k,l,m,n;
PathMatrix p;
DistancMatrix d;
CreateDN(g);
for(i=0;i<g.vexnum;i++)
g.arcs[i][i].adj=0; // ShortestPath_FLOYD()要求对角元素值为0
printf("邻接矩阵:\n");
for(i=0;i<g.vexnum;i++)
{
for(j=0;j<g.vexnum;j++)
printf("%11d",g.arcs[i][j]);
printf("\n");
}
ShortestPath_FLOYD(g,p,d);
printf("d矩阵:\n");
for(i=0;i<g.vexnum;i++)
{
for(j=0;j<g.vexnum;j++)
printf("%6d",d[i][j]);
printf("\n");
}
for(i=0;i<g.vexnum;i++)
for(j=0;j<g.vexnum;j++)
printf("%s到%s的最短距离为%d\n",g.vexs[i],g.vexs[j],d[i][j]);
printf("p矩阵:\n");
l=strlen(g.vexs[0]); // 顶点向量字符串的长度
for(i=0;i<g.vexnum;i++)
{
for(j=0;j<g.vexnum;j++)
{
if(i!=j)
{
m=0; // 占位空格
for(k=0;k<g.vexnum;k++)
if(p[i][j][k]==1)
printf("%s",g.vexs[k]);
else
m++;
for(n=0;n<m*l;n++) // 输出占位空格
printf(" ");
}
else
for(k=0;k<g.vexnum*l;k++) // 输出占位空格
printf(" ");
printf(" "); // 输出矩阵元素之间的间距
}
printf("\n");
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -