📄 textures.cpp
字号:
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
//
// Use of this source code is subject to the terms of the Microsoft end-user
// license agreement (EULA) under which you licensed this SOFTWARE PRODUCT.
// If you did not accept the terms of the EULA, you are not authorized to use
// this source code. For a copy of the EULA, please see the LICENSE.RTF on your
// install media.
//
//-----------------------------------------------------------------------------
// File: Textures.cpp
//
// Desc: Better than just lights and materials, 3D objects look much more
// convincing when texture-mapped. Textures can be thought of as a sort
// of wallpaper, that is shrinkwrapped to fit a texture. Textures are
// typically loaded from image files, and D3DX provides a utility to
// function to do this for us. Like a vertex buffer, textures have
// Lock() and Unlock() functions to access (read or write) the image
// data. Textures have a width, height, miplevel, and pixel format. The
// miplevel is for "mipmapped" textures, an advanced performance-
// enhancing feature which uses lower resolutions of the texture for
// objects in the distance where detail is less noticeable. The pixel
// format determines how the colors are stored in a texel. The most
// common formats are the 16-bit R5G6B5 format (5 bits of red, 6-bits of
// green and 5 bits of blue) and the 32-bit A8R8G8B8 format (8 bits each
// of alpha, red, green, and blue).
//
// Textures are associated with geometry through texture coordinates.
// Each vertex has one or more sets of texture coordinates, which are
// named tu and tv and range from 0.0 to 1.0. Texture coordinates can be
// supplied by the geometry, or can be automatically generated using
// Direct3D texture coordinate generation (which is an advanced feature).
//
//-----------------------------------------------------------------------------
#include <d3dx8.h>
#include <mmsystem.h>
#include "resource.h"
//-----------------------------------------------------------------------------
// Global variables
//-----------------------------------------------------------------------------
LPDIRECT3D8 g_pD3D = NULL; // Used to create the D3DDevice
LPDIRECT3DDEVICE8 g_pd3dDevice = NULL; // Our rendering device
LPDIRECT3DVERTEXBUFFER8 g_pVB = NULL; // Buffer to hold vertices
LPDIRECT3DTEXTURE8 g_pTexture = NULL; // Our texture
BOOL g_fWindowed = TRUE;
BOOL g_fHALDevice = TRUE;
// A structure for our custom vertex type. We added texture coordinates
struct CUSTOMVERTEX
{
D3DXVECTOR3 position; // The position
D3DCOLOR color; // The color
FLOAT tu, tv; // The texture coordinates
};
// Our custom FVF, which describes our custom vertex structure
#define D3DFVF_CUSTOMVERTEX (D3DFVF_XYZ|D3DFVF_DIFFUSE|D3DFVF_TEX1)
//-----------------------------------------------------------------------------
// Name: InitD3D()
// Desc: Initializes Direct3D
//-----------------------------------------------------------------------------
HRESULT InitD3D( HWND hWnd )
{
// Create the D3D object.
if( NULL == ( g_pD3D = Direct3DCreate8( D3D_SDK_VERSION ) ) )
return E_FAIL;
// Get the current desktop display mode, so we can set up a back
// buffer of the same format
D3DDISPLAYMODE d3ddm;
if( FAILED( g_pD3D->GetAdapterDisplayMode( D3DADAPTER_DEFAULT, &d3ddm ) ) )
return E_FAIL;
// Set up the structure used to create the D3DDevice. Since we are now
// using more complex geometry, we will create a device with a zbuffer.
D3DPRESENT_PARAMETERS d3dpp;
ZeroMemory( &d3dpp, sizeof(d3dpp) );
if (g_fWindowed)
{
d3dpp.Windowed = TRUE;
d3dpp.BackBufferWidth = 0;
d3dpp.BackBufferHeight = 0;
}
else
{
d3dpp.Windowed = FALSE;
d3dpp.BackBufferWidth = 640;
d3dpp.BackBufferHeight = 480;
}
d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
d3dpp.BackBufferFormat = d3ddm.Format;
d3dpp.EnableAutoDepthStencil = TRUE;
d3dpp.AutoDepthStencilFormat = D3DFMT_D16;
// Create the D3DDevice
if( FAILED( g_pD3D->CreateDevice( D3DADAPTER_DEFAULT,
g_fHALDevice ? D3DDEVTYPE_HAL : D3DDEVTYPE_REF,
hWnd, D3DCREATE_SOFTWARE_VERTEXPROCESSING,
&d3dpp, &g_pd3dDevice ) ) )
{
return E_FAIL;
}
// Turn off culling
g_pd3dDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_NONE );
// Turn off D3D lighting
g_pd3dDevice->SetRenderState( D3DRS_LIGHTING, FALSE );
// Turn on the zbuffer
g_pd3dDevice->SetRenderState( D3DRS_ZENABLE, TRUE );
return S_OK;
}
//-----------------------------------------------------------------------------
// Name: InitGeometry()
// Desc: Create the textures and vertex buffers
//-----------------------------------------------------------------------------
HRESULT InitGeometry()
{
// Use D3DX to create a texture from a resource based image
if( FAILED( D3DXCreateTextureFromResourceEx( g_pd3dDevice, GetModuleHandle(NULL),
MAKEINTRESOURCE(IDB_BANANA), D3DX_DEFAULT, D3DX_DEFAULT, 1, 0,
D3DFMT_UNKNOWN, D3DPOOL_DEFAULT, D3DX_FILTER_POINT, D3DX_FILTER_POINT,
0, NULL, NULL, &g_pTexture ) ) )
{
return E_FAIL;
}
// Create the vertex buffer.
if( FAILED( g_pd3dDevice->CreateVertexBuffer( 50*2*sizeof(CUSTOMVERTEX),
0, D3DFVF_CUSTOMVERTEX,
D3DPOOL_DEFAULT, &g_pVB ) ) )
{
return E_FAIL;
}
// Fill the vertex buffer. We are setting the tu and tv texture
// coordinates, which range from 0.0 to 1.0
CUSTOMVERTEX* pVertices;
if( FAILED( g_pVB->Lock( 0, 0, (BYTE**)&pVertices, 0 ) ) )
return E_FAIL;
for( DWORD i=0; i<50; i++ )
{
FLOAT theta = (2*D3DX_PI*i)/(50-1);
pVertices[2*i+0].position = D3DXVECTOR3( sinf(theta),-1.0f, cosf(theta) );
pVertices[2*i+0].color = 0xffffffff;
pVertices[2*i+0].tu = ((FLOAT)i)/(50-1);
pVertices[2*i+0].tv = 1.0f;
pVertices[2*i+1].position = D3DXVECTOR3( sinf(theta), 1.0f, cosf(theta) );
pVertices[2*i+1].color = 0xff808080;
pVertices[2*i+1].tu = ((FLOAT)i)/(50-1);
pVertices[2*i+1].tv = 0.0f;
}
g_pVB->Unlock();
return S_OK;
}
//-----------------------------------------------------------------------------
// Name: Cleanup()
// Desc: Releases all previously initialized objects
//-----------------------------------------------------------------------------
VOID Cleanup()
{
if( g_pTexture != NULL )
g_pTexture->Release();
if( g_pVB != NULL )
g_pVB->Release();
if( g_pd3dDevice != NULL )
g_pd3dDevice->Release();
if( g_pD3D != NULL )
g_pD3D->Release();
}
//-----------------------------------------------------------------------------
// Name: SetupMatrices()
// Desc: Sets up the world, view, and projection transform matrices.
//-----------------------------------------------------------------------------
VOID SetupMatrices()
{
// For our world matrix, we will add a rotation about the X axis
D3DXMATRIX matWorld;
D3DXMatrixRotationX( &matWorld, timeGetTime()/1000.0f );
g_pd3dDevice->SetTransform( D3DTS_WORLD, &matWorld );
// Set up our view matrix. A view matrix can be defined given an eye point,
// a point to lookat, and a direction for which way is up. Here, we set the
// eye five units back along the z-axis and up three units, look at the
// origin, and define "up" to be in the y-direction.
D3DXMATRIX matView;
D3DXMatrixLookAtLH( &matView, &D3DXVECTOR3( 0.0f, 3.0f,-5.0f ),
&D3DXVECTOR3( 0.0f, 0.0f, 0.0f ),
&D3DXVECTOR3( 0.0f, 1.0f, 0.0f ) );
g_pd3dDevice->SetTransform( D3DTS_VIEW, &matView );
// For the projection matrix, we set up a perspective transform (which
// transforms geometry from 3D view space to 2D viewport space, with
// a perspective divide making objects smaller in the distance). To build
// a perpsective transform, we need the field of view (1/4 pi is common),
// the aspect ratio, and the near and far clipping planes (which define at
// what distances geometry should be no longer be rendered).
D3DXMATRIX matProj;
D3DXMatrixPerspectiveFovLH( &matProj, D3DX_PI/4, 1.0f, 1.0f, 100.0f );
g_pd3dDevice->SetTransform( D3DTS_PROJECTION, &matProj );
}
//-----------------------------------------------------------------------------
// Name: Render()
// Desc: Draws the scene
//-----------------------------------------------------------------------------
VOID Render()
{
// Clear the backbuffer and the zbuffer
g_pd3dDevice->Clear( 0, NULL, D3DCLEAR_TARGET|D3DCLEAR_ZBUFFER,
D3DCOLOR_XRGB(0,0,255), 1.0f, 0 );
// Begin the scene
g_pd3dDevice->BeginScene();
// Setup the world, view, and projection matrices
SetupMatrices();
// Setup our texture. Using textures introduces the texture stage states,
// which govern how textures get blended together (in the case of multiple
// textures) and lighting information. In this case, we are modulating
// (blending) our texture with the diffuse color of the vertices.
g_pd3dDevice->SetTexture( 0, g_pTexture );
g_pd3dDevice->SetTextureStageState( 0, D3DTSS_COLOROP, D3DTOP_MODULATE );
g_pd3dDevice->SetTextureStageState( 0, D3DTSS_COLORARG1, D3DTA_TEXTURE );
g_pd3dDevice->SetTextureStageState( 0, D3DTSS_COLORARG2, D3DTA_DIFFUSE );
g_pd3dDevice->SetTextureStageState( 0, D3DTSS_ALPHAOP, D3DTOP_DISABLE );
#ifdef SHOW_HOW_TO_USE_TCI
// Note: to use D3D texture coordinate generation, use the stage state
// D3DTSS_TEXCOORDINDEX, as shown below. In this example, we are using
// the position of the vertex in camera space to generate texture
// coordinates. The tex coord index (TCI) parameters are passed into a
// texture transform, which is a 4x4 matrix which transforms the x,y,z
// TCI coordinates into tu, tv texture coordinates.
// In this example, the texture matrix is setup to
// transform the texture from (-1,+1) position coordinates to (0,1)
// texture coordinate space:
// tu = 0.5*x + 0.5
// tv = -0.5*y + 0.5
D3DXMATRIX mat;
mat._11 = 0.25f; mat._12 = 0.00f; mat._13 = 0.00f; mat._14 = 0.00f;
mat._21 = 0.00f; mat._22 =-0.25f; mat._23 = 0.00f; mat._24 = 0.00f;
mat._31 = 0.00f; mat._32 = 0.00f; mat._33 = 1.00f; mat._34 = 0.00f;
mat._41 = 0.50f; mat._42 = 0.50f; mat._43 = 0.00f; mat._44 = 1.00f;
g_pd3dDevice->SetTransform( D3DTS_TEXTURE0, &mat );
g_pd3dDevice->SetTextureStageState( 0, D3DTSS_TEXTURETRANSFORMFLAGS, D3DTTFF_COUNT2 );
g_pd3dDevice->SetTextureStageState( 0, D3DTSS_TEXCOORDINDEX, D3DTSS_TCI_CAMERASPACEPOSITION );
#endif
// Render the vertex buffer contents
g_pd3dDevice->SetStreamSource( 0, g_pVB, sizeof(CUSTOMVERTEX) );
g_pd3dDevice->SetVertexShader( D3DFVF_CUSTOMVERTEX );
g_pd3dDevice->DrawPrimitive( D3DPT_TRIANGLESTRIP, 0, 2*50-2 );
// End the scene
g_pd3dDevice->EndScene();
// Present the backbuffer contents to the display
g_pd3dDevice->Present( NULL, NULL, NULL, NULL );
}
//-----------------------------------------------------------------------------
// Name: MsgProc()
// Desc: The window's message handler
//-----------------------------------------------------------------------------
LRESULT WINAPI MsgProc( HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam )
{
switch( msg )
{
case WM_KEYUP:
if (VK_ESCAPE == wParam)
{
DestroyWindow(hWnd);
return 0;
}
break;
case WM_DESTROY:
PostQuitMessage( 0 );
return 0;
}
return DefWindowProc( hWnd, msg, wParam, lParam );
}
//-----------------------------------------------------------------------------
// Name: WinMain()
// Desc: The application's entry point
//-----------------------------------------------------------------------------
INT WINAPI WinMain( HINSTANCE hInst, HINSTANCE, LPTSTR pCmdLine, INT )
{
if (_tcsstr(pCmdLine, _T("fullscreen")))
{
g_fWindowed = FALSE;
}
if (_tcsstr(pCmdLine, _T("ref")))
{
g_fHALDevice = FALSE;
}
// Register the window class
WNDCLASS wc;
memset(&wc, 0, sizeof(wc));
wc.lpfnWndProc = MsgProc;
wc.hInstance = hInst;
wc.lpszClassName = TEXT("D3D Tutorial");
RegisterClass( &wc );
// Create the application's window
HWND hWnd = CreateWindowEx(0, TEXT("D3D Tutorial"), TEXT("D3D Tutorial 05: Textures"),
WS_OVERLAPPED, 0, 0, 320, 240,
NULL, NULL, wc.hInstance, NULL );
// Initialize Direct3D
if( SUCCEEDED( InitD3D( hWnd ) ) )
{
// Create the scene geometry
if( SUCCEEDED( InitGeometry() ) )
{
// Show the window
ShowWindow( hWnd, SW_SHOWNORMAL );
UpdateWindow( hWnd );
// Enter the message loop
MSG msg;
ZeroMemory( &msg, sizeof(msg) );
while( msg.message!=WM_QUIT )
{
if( PeekMessage( &msg, NULL, 0U, 0U, PM_REMOVE ) )
{
TranslateMessage( &msg );
DispatchMessage( &msg );
}
else
Render();
}
}
}
// Clean up everything and exit the app
Cleanup();
return 0;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -