📄 maxstar.h
字号:
/* File maxstar.h
Description: Performs the max* operations (Jacobian logarithm) defined as:
max*( x, y ) = max( x,y) + log( 1 + exp( - |x-y| ) )
There are several versions of this function, max_starX, where "X":
X = 0 For linear approximation to log-MAP
= 1 For max-log-MAP algorithm (i.e. max*(x,y) = max(x,y) )
= 2 For Constant-log-MAP algorithm
= 3 For log-MAP, correction factor from small nonuniform table and interpolation
= 4 For log-MAP, correction factor uses C function calls
Calling syntax:
output = max_starX( delta1, delta2 )
Where:
output = The result of max*(x,y)
delta1 = T] he first argument (i.e. x) of max*(x,y)
delta2 = The second argument (i.e. y) of max*(x,y)
Copyright (C) 2005, Matthew C. Valenti
Functions max_star0, max_star1, max_star2, max_star3, and max_star4
are part of the Iterative Solutions Coded Modulation Library
The Iterative Solutions Coded Modulation Library is free software;
you can redistribute it and/or modify it under the terms of
the GNU Lesser General Public License as published by the
Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/* values for the jacobian logarithm table (DecoderType=4) */
#define BOUNDARY0 0
#define BOUNDARY1 0.4200
#define BOUNDARY2 0.8500
#define BOUNDARY3 1.3100
#define BOUNDARY4 1.8300
#define BOUNDARY5 2.4100
#define BOUNDARY6 3.1300
#define BOUNDARY7 4.0800
#define BOUNDARY8 5.6000
#define SLOPE0 -0.44788139700522
#define SLOPE1 -0.34691145436176
#define SLOPE2 -0.25432579542705
#define SLOPE3 -0.17326680196715
#define SLOPE4 -0.10822110027877
#define SLOPE5 -0.06002650498009
#define SLOPE6 -0.02739265095522
#define SLOPE7 -0.00860202759280
#define VALUE0 0.68954718055995
#define VALUE1 0.50153699381775
#define VALUE2 0.35256506844219
#define VALUE3 0.23567520254575
#define VALUE4 0.14607646552283
#define VALUE5 0.08360822736113
#define VALUE6 0.04088914377547
#define VALUE7 0.01516612536801
/* values for the constant log-MAP algorithm (DecoderType=3) */
#define CVALUE 0.5
#define TVALUE 1.5
/* values for the linear approximation (DecoderType=1) */
#define TTHRESH 2.508
#define AVALUE -0.236
#define BVALUE 0.592
/* Values for linear approximation (DecoderType=5) */
#define AJIAN -0.24904163195436
#define TJIAN 2.50681740420944
/* The linear-log-MAP algorithm */
static float max_star0(
float delta1,
float delta2 )
{
register float diff;
diff = delta2 - delta1;
if ( diff > TJIAN )
return( delta2 );
else if ( diff < -TJIAN )
return( delta1 );
else if ( diff > 0 )
return( delta2 + AJIAN*(diff-TJIAN) );
else
return( delta1 - AJIAN*(diff+TJIAN) );
}
/* The max-log-MAP algorithm */
static float max_star1(
float delta1,
float delta2 )
{
/* Return the maximum of delta1 and delta2 */
if (delta1 > delta2)
return(delta1);
else
return(delta2);
}
/* The constant-log-MAP algorithm */
static float max_star2(
float delta1,
float delta2 )
{
/* Return maximum of delta1 and delta2
and in correction value if |delta1-delta2| < TVALUE */
register float diff;
diff = delta2 - delta1;
if ( diff > TVALUE )
return( delta2 );
else if ( diff < -TVALUE )
return( delta1 );
else if ( diff > 0 )
return( delta2 + CVALUE );
else
return( delta1 + CVALUE );
}
/* Accurate approximation of the log-MAP algorithm using an optimized
8 element nonuniform table with linear interpolation */
static float max_star3(
float delta1,
float delta2 )
{
register float diff;
diff = (float) fabs( delta2 - delta1 );
if (delta1 > delta2) {
if (diff > BOUNDARY8 )
return( delta1 );
else if ( diff > BOUNDARY4 ) {
if (diff > BOUNDARY6 ) {
if ( diff > BOUNDARY7 )
return( delta1 + VALUE7 + SLOPE7*(diff-BOUNDARY7) );
else
return( delta1 + VALUE6 + SLOPE6*(diff-BOUNDARY6) );
} else {
if ( diff > BOUNDARY5 )
return( delta1 + VALUE5 + SLOPE5*(diff-BOUNDARY5) );
else
return( delta1 + VALUE4 + SLOPE4*(diff-BOUNDARY4) );
}
} else {
if (diff > BOUNDARY2 ) {
if ( diff > BOUNDARY3 )
return( delta1 + VALUE3 + SLOPE3*(diff-BOUNDARY3) );
else
return( delta1 + VALUE2 + SLOPE2*(diff-BOUNDARY2) );
} else {
if ( diff > BOUNDARY1 )
return( delta1 + VALUE1 + SLOPE1*(diff-BOUNDARY1) );
else
return( delta1 + VALUE0 + SLOPE0*(diff-BOUNDARY0) );
}
}
} else {
if (diff > BOUNDARY8 )
return( delta2 );
else if ( diff > BOUNDARY4 ) {
if (diff > BOUNDARY6 ) {
if ( diff > BOUNDARY7 )
return( delta2 + VALUE7 + SLOPE7*(diff-BOUNDARY7) );
else
return( delta2 + VALUE6 + SLOPE6*(diff-BOUNDARY6) );
} else {
if ( diff > BOUNDARY5 )
return( delta2 + VALUE5 + SLOPE5*(diff-BOUNDARY5) );
else
return( delta2 + VALUE4 + SLOPE4*(diff-BOUNDARY4) );
}
} else {
if (diff > BOUNDARY2 ) {
if ( diff > BOUNDARY3 )
return( delta2 + VALUE3 + SLOPE3*(diff-BOUNDARY3) );
else
return( delta2 + VALUE2 + SLOPE2*(diff-BOUNDARY2) );
} else {
if ( diff > BOUNDARY1 )
return( delta2 + VALUE1 + SLOPE1*(diff-BOUNDARY1) );
else
return( delta2 + VALUE0 + SLOPE0*(diff-BOUNDARY0) );
}
}
}
}
/* Exact calculation of the log-MAP algorithm */
static float max_star4(
float delta1,
float delta2 )
{
/* Use C-function calls to compute the correction function */
if (delta1 > delta2) {
return( (float) (delta1 + log( 1 + exp( delta2-delta1) ) ) );
} else {
return( (float) (delta2 + log( 1 + exp( delta1-delta2) ) ) );
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -