📄 plotout.m
字号:
function plotout(S,errs,x,exm,xname,subp,pcolor)
sw=['Result plotting'];
if pcolor c1='r';c2='b';c3='m';c4='g'; c5='y'; c6='k';
else c1='k';c2='k';c3='';c4=''; c5='k'; c6='k';end
if subp==0 figure('name',sw,'numbertitle','off','color','white');
else subplot(2,2,subp);cla; end
ps=size(S,1);
plot(x,S(1,:),'k*',x,S(2,:),'ko'); hold on;
if ps>2 plot(x,S(3,:),'k^',x,S(4,:),'k+'); hold on; end
plot(x,S(1,:),'k-',x,S(2,:),'k-.'); hold on;
if ps>3 plot(x,S(3,:),'k-',x,S(4,:),'k:'); end
T=max(max(S));
xlim([-0.1+min(x) 0.1+max(x)]);
xlabel('Noise Variance','FontSize',11,'FontWeight','demi');
ylabel('Prediction Error','FontSize',11,'FontWeight','demi');
if subp==0
if ps<3
legend('Linear/SVR','GcLearn Linear/SVR',2);
else
legend('Linear regression','GcLearn LinearRegress','epsilon-SVR','GcLearn epsilon-SVR',2);
end
ylim([0 1.2*T]);
else
legend('Linear','GcL-Lin','eps-SVR','GcL-SVR',2);
ylim([0 1.2*T]);
end
title(['Results for ' xname]);
if errs~=[] & exm>10
errs=100*errs;
subplot(2,2,3);cla;
plot(x,errs(1,:),'k*',x,errs(2,:),'ko'); hold on;
plot(x,errs(1,:),'k-.',x,errs(2,:),'k-');
T=max(errs(2,:));
xlim([-0.1+min(x) 0.1+max(x)]);
xlabel('Noise Variance','FontSize',11,'FontWeight','demi');
ylabel('Model Error (%)','FontSize',11,'FontWeight','demi');
if subp==0
legend('GcLearn Lregression','Linear regression',2);
ylim([0 1.1*T]);
else
legend('GcLregress','Lregress',2);
ylim([0 1.2*T]);
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -