📄 probabilityfunction.html
字号:
<CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../BayesianNetworks/ProbabilityFunction.html#posterior_expected_value(BayesianNetworks.DiscreteFunction)">posterior_expected_value</A></B>(<A HREF="../BayesianNetworks/DiscreteFunction.html" title="class in BayesianNetworks">DiscreteFunction</A> df)</CODE><BR> Obtain posterior expected value of a DiscreteFunction This assumes that the probability values are unnormalized, equal to p(x, e) where e is the evidence.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> void</CODE></FONT></TD><TD><CODE><B><A HREF="../BayesianNetworks/ProbabilityFunction.html#print(java.io.PrintStream)">print</A></B>(java.io.PrintStream out)</CODE><BR> Print method.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> void</CODE></FONT></TD><TD><CODE><B><A HREF="../BayesianNetworks/ProbabilityFunction.html#remove_property(int)">remove_property</A></B>(int i)</CODE><BR> Remove a property in a given position in the current ProbabilityFunction.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> void</CODE></FONT></TD><TD><CODE><B><A HREF="../BayesianNetworks/ProbabilityFunction.html#remove_property(java.lang.String)">remove_property</A></B>(java.lang.String prop)</CODE><BR> Remove a property in the current ProbabilityFunction.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> void</CODE></FONT></TD><TD><CODE><B><A HREF="../BayesianNetworks/ProbabilityFunction.html#save_xml_0_3(java.io.PrintStream)">save_xml_0_3</A></B>(java.io.PrintStream out)</CODE><BR> Save the contents of a ProbabilityFunction object into a PrintStream in the XMLBIF v0.3 format.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> void</CODE></FONT></TD><TD><CODE><B><A HREF="../BayesianNetworks/ProbabilityFunction.html#save_xml(java.io.PrintStream)">save_xml</A></B>(java.io.PrintStream out)</CODE><BR> Save the contents of a ProbabilityFunction object into a PrintStream.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> void</CODE></FONT></TD><TD><CODE><B><A HREF="../BayesianNetworks/ProbabilityFunction.html#set_properties(java.util.Vector)">set_properties</A></B>(java.util.Vector prop)</CODE><BR> Set the properties.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> void</CODE></FONT></TD><TD><CODE><B><A HREF="../BayesianNetworks/ProbabilityFunction.html#set_value(java.lang.String[][], double)">set_value</A></B>(java.lang.String[][] variable_value_pairs, double val)</CODE><BR> Set a single value of the probability function.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../BayesianNetworks/ProbabilityFunction.html#variance(BayesianNetworks.DiscreteFunction)">variance</A></B>(<A HREF="../BayesianNetworks/DiscreteFunction.html" title="class in BayesianNetworks">DiscreteFunction</A> df)</CODE><BR> Calculate the variance of a DiscreteFunction.</TD></TR></TABLE> <A NAME="methods_inherited_from_class_BayesianNetworks.DiscreteFunction"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TD><B>Methods inherited from class BayesianNetworks.<A HREF="../BayesianNetworks/DiscreteFunction.html" title="class in BayesianNetworks">DiscreteFunction</A></B></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><A HREF="../BayesianNetworks/DiscreteFunction.html#evaluate(BayesianNetworks.DiscreteVariable[], int[])">evaluate</A>, <A HREF="../BayesianNetworks/DiscreteFunction.html#get_index(int)">get_index</A>, <A HREF="../BayesianNetworks/DiscreteFunction.html#get_indexes()">get_indexes</A>, <A HREF="../BayesianNetworks/DiscreteFunction.html#get_position_from_indexes(BayesianNetworks.DiscreteVariable[], int[])">get_position_from_indexes</A>, <A HREF="../BayesianNetworks/DiscreteFunction.html#get_value(int)">get_value</A>, <A HREF="../BayesianNetworks/DiscreteFunction.html#get_values()">get_values</A>, <A HREF="../BayesianNetworks/DiscreteFunction.html#get_variable(int)">get_variable</A>, <A HREF="../BayesianNetworks/DiscreteFunction.html#get_variables()">get_variables</A>, <A HREF="../BayesianNetworks/DiscreteFunction.html#memberOf(int)">memberOf</A>, <A HREF="../BayesianNetworks/DiscreteFunction.html#multiply(BayesianNetworks.DiscreteVariable[], BayesianNetworks.DiscreteFunction)">multiply</A>, <A HREF="../BayesianNetworks/DiscreteFunction.html#normalize_first()">normalize_first</A>, <A HREF="../BayesianNetworks/DiscreteFunction.html#normalize()">normalize</A>, <A HREF="../BayesianNetworks/DiscreteFunction.html#number_values()">number_values</A>, <A HREF="../BayesianNetworks/DiscreteFunction.html#number_variables()">number_variables</A>, <A HREF="../BayesianNetworks/DiscreteFunction.html#print()">print</A>, <A HREF="../BayesianNetworks/DiscreteFunction.html#set_value(int, double)">set_value</A>, <A HREF="../BayesianNetworks/DiscreteFunction.html#set_values(double[])">set_values</A>, <A HREF="../BayesianNetworks/DiscreteFunction.html#set_variable(int, BayesianNetworks.DiscreteVariable)">set_variable</A>, <A HREF="../BayesianNetworks/DiscreteFunction.html#sum_out(BayesianNetworks.DiscreteVariable[], boolean[])">sum_out</A></CODE></TD></TR></TABLE> <A NAME="methods_inherited_from_class_java.lang.Object"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TD><B>Methods inherited from class java.lang.Object</B></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE>clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait</CODE></TD></TR></TABLE> <P><!-- ============ FIELD DETAIL =========== --><A NAME="field_detail"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Field Detail</B></FONT></TD></TR></TABLE><A NAME="properties"><!-- --></A><H3>properties</H3><PRE>protected java.util.Vector <B>properties</B></PRE><DL><DL></DL></DL><HR><A NAME="bn"><!-- --></A><H3>bn</H3><PRE>protected <A HREF="../BayesianNetworks/BayesNet.html" title="class in BayesianNetworks">BayesNet</A> <B>bn</B></PRE><DL><DL></DL></DL><!-- ========= CONSTRUCTOR DETAIL ======== --><A NAME="constructor_detail"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Constructor Detail</B></FONT></TD></TR></TABLE><A NAME="ProbabilityFunction()"><!-- --></A><H3>ProbabilityFunction</H3><PRE>public <B>ProbabilityFunction</B>()</PRE><DL><DD>Default constructor for a ProbabilityFunction.<P></DL><HR><A NAME="ProbabilityFunction(BayesianNetworks.BayesNet, int, int, java.util.Vector)"><!-- --></A><H3>ProbabilityFunction</H3><PRE>public <B>ProbabilityFunction</B>(<A HREF="../BayesianNetworks/BayesNet.html" title="class in BayesianNetworks">BayesNet</A> b_n, int n_vb, int n_vl, java.util.Vector prop)</PRE><DL><DD>Constructor for ProbabilityFunction.<P></DL><HR><A NAME="ProbabilityFunction(BayesianNetworks.BayesNet, BayesianNetworks.DiscreteVariable[], double[], java.util.Vector)"><!-- --></A><H3>ProbabilityFunction</H3><PRE>public <B>ProbabilityFunction</B>(<A HREF="../BayesianNetworks/BayesNet.html" title="class in BayesianNetworks">BayesNet</A> b_n, <A HREF="../BayesianNetworks/DiscreteVariable.html" title="class in BayesianNetworks">DiscreteVariable</A>[] pvs, double[] v, java.util.Vector prop)</PRE><DL><DD>Constructor for ProbabilityFunction.<P></DL><HR><A NAME="ProbabilityFunction(BayesianNetworks.DiscreteFunction, double[])"><!-- --></A><H3>ProbabilityFunction</H3><PRE>public <B>ProbabilityFunction</B>(<A HREF="../BayesianNetworks/DiscreteFunction.html" title="class in BayesianNetworks">DiscreteFunction</A> df, double[] new_values)</PRE><DL><DD>Constructor for ProbabilityFunction.<P></DL><HR><A NAME="ProbabilityFunction(BayesianNetworks.DiscreteFunction, BayesianNetworks.BayesNet)"><!-- --></A><H3>ProbabilityFunction</H3><PRE>public <B>ProbabilityFunction</B>(<A HREF="../BayesianNetworks/DiscreteFunction.html" title="class in BayesianNetworks">DiscreteFunction</A> df, <A HREF="../BayesianNetworks/BayesNet.html" title="class in BayesianNetworks">BayesNet</A> b_n)</PRE><DL><DD>Constructor for ProbabilityFunction.<P></DL><!-- ============ METHOD DETAIL ========== --><A NAME="method_detail"><!-- --></A><TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY=""><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Method Detail</B></FONT></TD></TR></TABLE><A NAME="set_value(java.lang.String[][], double)"><!-- --></A><H3>set_value</H3><PRE>public void <B>set_value</B>(java.lang.String[][] variable_value_pairs, double val)</PRE><DL><DD>Set a single value of the probability function.<P><DD><DL></DL></DD><DD><DL></DL></DD></DL><HR><A NAME="evaluate(java.lang.String[][])"><!-- --></A><H3>evaluate</H3><PRE>public double <B>evaluate</B>(java.lang.String[][] variable_value_pairs)</PRE><DL><DD>Evaluate a function given a list of pairs (Variable Value) which specifies a value of the function.<P><DD><DL></DL></DD><DD><DL></DL></DD></DL><HR><A NAME="evaluate(int[])"><!-- --></A><H3>evaluate</H3><PRE>public double <B>evaluate</B>(int[] value_indexes)</PRE><DL><DD>Evaluate a function given a (possibly partial) instantiation of variables through the markers. The markers indicate which variables are present in the function to be evaluated.<P><DD><DL></DL></DD><DD><DL></DL></DD></DL><HR><A NAME="get_position_from_indexes(int[])"><!-- --></A><H3>get_position_from_indexes</H3><PRE>public int <B>get_position_from_indexes</B>(int[] variable_indexes)</PRE><DL><DD>Get position in a function from a (possibly partial) instantiation of variables through the indexes.<P><DD><DL></DL></DD><DD><DL></DL></DD></DL><HR>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -