📄 qualitymeasurelcv_loo.java
字号:
/** * JBNC - Bayesian Network Classifiers Toolbox <p> * * Latest release available at http://sourceforge.net/projects/jbnc/ <p> * * Copyright (C) 1999-2003 Jarek Sacha <p> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. <p> * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. <p> * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 Temple * Place - Suite 330, Boston, MA 02111-1307, USA. <br> * http://www.fsf.org/licenses/gpl.txt */package jbnc.measures;import BayesianNetworks.BayesNet;import jbnc.dataset.DatasetInt;/** * LCV_LOO - Local Cross Validation, Leave-One-Out. Measure the quality of the * Bayesian network on the dataset using leave-one-out cross validation (on * class variable). * * @author Jarek Sacha * @since June 1, 1999 */public class QualityMeasureLCV_LOO extends QualityMeasure { /** Constructor for the QualityMeasureLCV_LOO object */ public QualityMeasureLCV_LOO() { super(); } /** * Constructor for the QualityMeasureLCV_LOO object * * @param dataset Description of Parameter */ public QualityMeasureLCV_LOO(DatasetInt dataset) { super(dataset); } /** * Gets the Name attribute of the QualityMeasureLCV_LOO object * * @return The Name value */ public String getName() { return "Leave-one-out cross-valiadation"; } /** * Description of the Method * * @param net Description of Parameter * @return Description of the Returned Value * @exception Exception Description of Exception */ public final double evaluate(BayesNet net) throws Exception { double q = 0; jbnc.util.FrequencyTable freqTable = new jbnc.util.FrequencyTable(net); freqTable.setCases(dataset.cases); jbnc.graphs.BNCInference inference = new jbnc.graphs.BNCInference(net);// QualityMeasureLogC lc = new QualityMeasureLogC(); int nbCases = dataset.cases.size(); int nbAttrib = dataset.names.length - 1;// DatasetInt testSet = (DatasetInt)dataset.clone();// testSet.cases = new Vector();// testSet.cases.setSize(1); // Disable cases one at a time and learn net parameters. // All the try-catch-finally stuff is to make sure that // dataset is put back to its initial state even when an exception // is trown by parameter learning. for (int i = 0; i < nbCases; ++i) { // Learn network parameters int[] thisCase = (int[]) dataset.cases.get(i); freqTable.removeCase(thisCase); freqTable.learnNetParam(net, usePriors, alphaK); freqTable.addCase(thisCase); // Do inference double[] classProb = inference.getCondClassProb(thisCase); // Find dataset index for current cases class int trueClassIndex = thisCase[nbAttrib]; double lq = Math.log(classProb[trueClassIndex]); q += lq; /* * dataset.cases.set(i, null); * try * { * Util.BNTools.learnParameters(net, dataset, usePriors, alphaK); * } * catch(Exception e) * { * throw e; * } * finally * { * dataset.cases.set(i, thisCase); * } * / Measure quality for this case * testSet.cases.set(0, thisCase); * q += lc.evaluate(net, testSet); */ } return q; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -