⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 filter.c

📁 Linux内核源代码 为压缩文件 是<<Linux内核>>一书中的源代码
💻 C
字号:
/* * Linux Socket Filter - Kernel level socket filtering * * Author: *     Jay Schulist <jschlst@turbolinux.com> * * Based on the design of: *     - The Berkeley Packet Filter * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Andi Kleen - Fix a few bad bugs and races. */#include <linux/config.h>#if defined(CONFIG_FILTER)#include <linux/module.h>#include <linux/types.h>#include <linux/sched.h>#include <linux/mm.h>#include <linux/fcntl.h>#include <linux/socket.h>#include <linux/in.h>#include <linux/inet.h>#include <linux/netdevice.h>#include <linux/if_packet.h>#include <net/ip.h>#include <net/protocol.h>#include <linux/skbuff.h>#include <net/sock.h>#include <linux/errno.h>#include <linux/timer.h>#include <asm/system.h>#include <asm/uaccess.h>#include <linux/filter.h>/* No hurry in this branch */static u8 *load_pointer(struct sk_buff *skb, int k){	u8 *ptr = NULL;	if (k>=SKF_NET_OFF)		ptr = skb->nh.raw + k - SKF_NET_OFF;	else if (k>=SKF_LL_OFF)		ptr = skb->mac.raw + k - SKF_LL_OFF;	if (ptr >= skb->head && ptr < skb->tail)		return ptr;	return NULL;}/** *	sk_run_filter	- 	run a filter on a socket *	@skb: buffer to run the filter on *	@filter: filter to apply *	@flen: length of filter * * Decode and apply filter instructions to the skb->data. * Return length to keep, 0 for none. skb is the data we are * filtering, filter is the array of filter instructions, and * len is the number of filter blocks in the array. */ int sk_run_filter(struct sk_buff *skb, struct sock_filter *filter, int flen){	unsigned char *data = skb->data;	/* len is UNSIGNED. Byte wide insns relies only on implicit	   type casts to prevent reading arbitrary memory locations.	 */	unsigned int len = skb->len;	struct sock_filter *fentry;	/* We walk down these */	u32 A = 0;	   		/* Accumulator */	u32 X = 0;   			/* Index Register */	u32 mem[BPF_MEMWORDS];		/* Scratch Memory Store */	int k;	int pc;	/*	 * Process array of filter instructions.	 */	for(pc = 0; pc < flen; pc++)	{		fentry = &filter[pc];					switch(fentry->code)		{			case BPF_ALU|BPF_ADD|BPF_X:				A += X;				continue;			case BPF_ALU|BPF_ADD|BPF_K:				A += fentry->k;				continue;			case BPF_ALU|BPF_SUB|BPF_X:				A -= X;				continue;			case BPF_ALU|BPF_SUB|BPF_K:				A -= fentry->k;				continue;			case BPF_ALU|BPF_MUL|BPF_X:				A *= X;				continue;			case BPF_ALU|BPF_MUL|BPF_K:				A *= fentry->k;				continue;			case BPF_ALU|BPF_DIV|BPF_X:				if(X == 0)					return (0);				A /= X;				continue;			case BPF_ALU|BPF_DIV|BPF_K:				if(fentry->k == 0)					return (0);				A /= fentry->k;				continue;			case BPF_ALU|BPF_AND|BPF_X:				A &= X;				continue;			case BPF_ALU|BPF_AND|BPF_K:				A &= fentry->k;				continue;			case BPF_ALU|BPF_OR|BPF_X:				A |= X;				continue;			case BPF_ALU|BPF_OR|BPF_K:				A |= fentry->k;				continue;			case BPF_ALU|BPF_LSH|BPF_X:				A <<= X;				continue;			case BPF_ALU|BPF_LSH|BPF_K:				A <<= fentry->k;				continue;			case BPF_ALU|BPF_RSH|BPF_X:				A >>= X;				continue;			case BPF_ALU|BPF_RSH|BPF_K:				A >>= fentry->k;				continue;			case BPF_ALU|BPF_NEG:				A = -A;				continue;			case BPF_JMP|BPF_JA:				pc += fentry->k;				continue;			case BPF_JMP|BPF_JGT|BPF_K:				pc += (A > fentry->k) ? fentry->jt : fentry->jf;				continue;			case BPF_JMP|BPF_JGE|BPF_K:				pc += (A >= fentry->k) ? fentry->jt : fentry->jf;				continue;			case BPF_JMP|BPF_JEQ|BPF_K:				pc += (A == fentry->k) ? fentry->jt : fentry->jf;				continue;			case BPF_JMP|BPF_JSET|BPF_K:				pc += (A & fentry->k) ? fentry->jt : fentry->jf;				continue;			case BPF_JMP|BPF_JGT|BPF_X:				pc += (A > X) ? fentry->jt : fentry->jf;				continue;			case BPF_JMP|BPF_JGE|BPF_X:				pc += (A >= X) ? fentry->jt : fentry->jf;				continue;			case BPF_JMP|BPF_JEQ|BPF_X:				pc += (A == X) ? fentry->jt : fentry->jf;				continue;			case BPF_JMP|BPF_JSET|BPF_X:				pc += (A & X) ? fentry->jt : fentry->jf;				continue;			case BPF_LD|BPF_W|BPF_ABS:				k = fentry->k;load_w:				if(k+sizeof(u32) <= len) {					A = ntohl(*(u32*)&data[k]);					continue;				}				if (k<0) {					u8 *ptr;					if (k>=SKF_AD_OFF)						break;					if ((ptr = load_pointer(skb, k)) != NULL) {						A = ntohl(*(u32*)ptr);						continue;					}				}				return 0;			case BPF_LD|BPF_H|BPF_ABS:				k = fentry->k;load_h:				if(k + sizeof(u16) <= len) {					A = ntohs(*(u16*)&data[k]);					continue;				}				if (k<0) {					u8 *ptr;					if (k>=SKF_AD_OFF)						break;					if ((ptr = load_pointer(skb, k)) != NULL) {						A = ntohs(*(u16*)ptr);						continue;					}				}				return 0;			case BPF_LD|BPF_B|BPF_ABS:				k = fentry->k;load_b:				if(k < len) {					A = data[k];					continue;				}				if (k<0) {					u8 *ptr;					if (k>=SKF_AD_OFF)						break;					if ((ptr = load_pointer(skb, k)) != NULL) {						A = *ptr;						continue;					}				}				return 0;			case BPF_LD|BPF_W|BPF_LEN:				A = len;				continue;			case BPF_LDX|BPF_W|BPF_LEN:				X = len;				continue;			case BPF_LD|BPF_W|BPF_IND:				k = X + fentry->k;				goto load_w;                       case BPF_LD|BPF_H|BPF_IND:				k = X + fentry->k;				goto load_h;                       case BPF_LD|BPF_B|BPF_IND:				k = X + fentry->k;				goto load_b;			case BPF_LDX|BPF_B|BPF_MSH:				k = fentry->k;				if(k >= len)					return (0);				X = (data[k] & 0xf) << 2;				continue;			case BPF_LD|BPF_IMM:				A = fentry->k;				continue;			case BPF_LDX|BPF_IMM:				X = fentry->k;				continue;			case BPF_LD|BPF_MEM:				A = mem[fentry->k];				continue;			case BPF_LDX|BPF_MEM:				X = mem[fentry->k];				continue;			case BPF_MISC|BPF_TAX:				X = A;				continue;			case BPF_MISC|BPF_TXA:				A = X;				continue;			case BPF_RET|BPF_K:				return ((unsigned int)fentry->k);			case BPF_RET|BPF_A:				return ((unsigned int)A);			case BPF_ST:				mem[fentry->k] = A;				continue;			case BPF_STX:				mem[fentry->k] = X;				continue;			default:				/* Invalid instruction counts as RET */				return (0);		}		/* Handle ancillary data, which are impossible		   (or very difficult) to get parsing packet contents.		 */		switch (k-SKF_AD_OFF) {		case SKF_AD_PROTOCOL:			A = htons(skb->protocol);			continue;		case SKF_AD_PKTTYPE:			A = skb->pkt_type;			continue;		case SKF_AD_IFINDEX:			A = skb->dev->ifindex;			continue;		default:			return 0;		}	}	return (0);}/** *	sk_chk_filter - verify socket filter code *	@filter: filter to verify *	@flen: length of filter * * Check the user's filter code. If we let some ugly * filter code slip through kaboom! The filter must contain * no references or jumps that are out of range, no illegal instructions * and no backward jumps. It must end with a RET instruction * * Returns 0 if the rule set is legal or a negative errno code if not. */int sk_chk_filter(struct sock_filter *filter, int flen){	struct sock_filter *ftest;        int pc;       /*        * Check the filter code now.        */	for(pc = 0; pc < flen; pc++)	{		/*                 *	All jumps are forward as they are not signed                 */                                 ftest = &filter[pc];		if(BPF_CLASS(ftest->code) == BPF_JMP)		{			/*			 *	But they mustn't jump off the end.			 */			if(BPF_OP(ftest->code) == BPF_JA)			{				/* Note, the large ftest->k might cause				   loops. Compare this with conditional				   jumps below, where offsets are limited. --ANK (981016)				 */				if (ftest->k >= (unsigned)(flen-pc-1))					return (-EINVAL);			}                        else			{				/*				 *	For conditionals both must be safe				 */ 				if(pc + ftest->jt +1 >= flen || pc + ftest->jf +1 >= flen)					return (-EINVAL);			}                }                /*                 *	Check that memory operations use valid addresses.                 */                                 if (ftest->k >= BPF_MEMWORDS)                {                	/*                	 *	But it might not be a memory operation...                	 */			switch (ftest->code) {			case BPF_ST:				case BPF_STX:				case BPF_LD|BPF_MEM:				case BPF_LDX|BPF_MEM:	                		return -EINVAL;			}		}        }	/*	 *	The program must end with a return. We don't care where they	 *	jumped within the script (its always forwards) but in the	 *	end they _will_ hit this.	 */	         return (BPF_CLASS(filter[flen - 1].code) == BPF_RET)?0:-EINVAL;}/** *	sk_attach_filter - attach a socket filter *	@fprog: the filter program *	@sk: the socket to use * * Attach the user's filter code. We first run some sanity checks on * it to make sure it does not explode on us later. If an error * occurs or there is insufficient memory for the filter a negative * errno code is returned. On success the return is zero. */int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk){	struct sk_filter *fp; 	unsigned int fsize = sizeof(struct sock_filter) * fprog->len;	int err;	/* Make sure new filter is there and in the right amounts. */        if (fprog->filter == NULL || fprog->len > BPF_MAXINSNS)                return (-EINVAL);	fp = (struct sk_filter *)sock_kmalloc(sk, fsize+sizeof(*fp), GFP_KERNEL);	if(fp == NULL)		return (-ENOMEM);	if (copy_from_user(fp->insns, fprog->filter, fsize)) {		sock_kfree_s(sk, fp, fsize+sizeof(*fp)); 		return -EFAULT;	}	atomic_set(&fp->refcnt, 1);	fp->len = fprog->len;	if ((err = sk_chk_filter(fp->insns, fp->len))==0) {		struct sk_filter *old_fp;		spin_lock_bh(&sk->lock.slock);		old_fp = sk->filter;		sk->filter = fp;		spin_unlock_bh(&sk->lock.slock);		fp = old_fp;	}	if (fp)		sk_filter_release(sk, fp);	return (err);}#endif /* CONFIG_FILTER */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -