⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pgtable.h

📁 Linux内核源代码 为压缩文件 是<<Linux内核>>一书中的源代码
💻 H
字号:
#ifndef _I386_PGTABLE_H#define _I386_PGTABLE_H#include <linux/config.h>/* * The Linux memory management assumes a three-level page table setup. On * the i386, we use that, but "fold" the mid level into the top-level page * table, so that we physically have the same two-level page table as the * i386 mmu expects. * * This file contains the functions and defines necessary to modify and use * the i386 page table tree. */#ifndef __ASSEMBLY__#include <asm/processor.h>#include <asm/fixmap.h>#include <linux/threads.h>#ifndef _I386_BITOPS_H#include <asm/bitops.h>#endifextern pgd_t swapper_pg_dir[1024];extern void paging_init(void);/* Caches aren't brain-dead on the intel. */#define flush_cache_all()			do { } while (0)#define flush_cache_mm(mm)			do { } while (0)#define flush_cache_range(mm, start, end)	do { } while (0)#define flush_cache_page(vma, vmaddr)		do { } while (0)#define flush_page_to_ram(page)			do { } while (0)#define flush_dcache_page(page)			do { } while (0)#define flush_icache_range(start, end)		do { } while (0)#define flush_icache_page(vma,pg)		do { } while (0)#define __flush_tlb()							\	do {								\		unsigned int tmpreg;					\									\		__asm__ __volatile__(					\			"movl %%cr3, %0;  # flush TLB \n"		\			"movl %0, %%cr3;              \n"		\			: "=r" (tmpreg)					\			:: "memory");					\	} while (0)/* * Global pages have to be flushed a bit differently. Not a real * performance problem because this does not happen often. */#define __flush_tlb_global()						\	do {								\		unsigned int tmpreg;					\									\		__asm__ __volatile__(					\			"movl %1, %%cr4;  # turn off PGE     \n"	\			"movl %%cr3, %0;  # flush TLB        \n"	\			"movl %0, %%cr3;                     \n"	\			"movl %2, %%cr4;  # turn PGE back on \n"	\			: "=&r" (tmpreg)				\			: "r" (mmu_cr4_features & ~X86_CR4_PGE),	\			  "r" (mmu_cr4_features)			\			: "memory");					\	} while (0)extern unsigned long pgkern_mask;/* * Do not check the PGE bit unnecesserily if this is a PPro+ kernel. */#ifdef CONFIG_X86_PGE# define __flush_tlb_all() __flush_tlb_global()#else# define __flush_tlb_all()						\	do {								\		if (cpu_has_pge)					\			__flush_tlb_global();				\		else							\			__flush_tlb();					\	} while (0)#endif#ifndef CONFIG_X86_INVLPG#define __flush_tlb_one(addr) __flush_tlb()#else#define __flush_tlb_one(addr) \__asm__ __volatile__("invlpg %0": :"m" (*(char *) addr))#endif/* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */extern unsigned long empty_zero_page[1024];#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))#endif /* !__ASSEMBLY__ *//* * The Linux x86 paging architecture is 'compile-time dual-mode', it * implements both the traditional 2-level x86 page tables and the * newer 3-level PAE-mode page tables. */#ifndef __ASSEMBLY__#if CONFIG_X86_PAE# include <asm/pgtable-3level.h>#else# include <asm/pgtable-2level.h>#endif#endif#define __beep() asm("movb $0x3,%al; outb %al,$0x61")#define PMD_SIZE	(1UL << PMD_SHIFT)#define PMD_MASK	(~(PMD_SIZE-1))#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)#define PGDIR_MASK	(~(PGDIR_SIZE-1))#define USER_PTRS_PER_PGD	(TASK_SIZE/PGDIR_SIZE)#define FIRST_USER_PGD_NR	0#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)#define TWOLEVEL_PGDIR_SHIFT	22#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)#define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)#ifndef __ASSEMBLY__/* Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts.  That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */#define VMALLOC_OFFSET	(8*1024*1024)#define VMALLOC_START	(((unsigned long) high_memory + 2*VMALLOC_OFFSET-1) & \						~(VMALLOC_OFFSET-1))#define VMALLOC_VMADDR(x) ((unsigned long)(x))#define VMALLOC_END	(FIXADDR_START)/* * The 4MB page is guessing..  Detailed in the infamous "Chapter H" * of the Pentium details, but assuming intel did the straightforward * thing, this bit set in the page directory entry just means that * the page directory entry points directly to a 4MB-aligned block of * memory.  */#define _PAGE_BIT_PRESENT	0#define _PAGE_BIT_RW		1#define _PAGE_BIT_USER		2#define _PAGE_BIT_PWT		3#define _PAGE_BIT_PCD		4#define _PAGE_BIT_ACCESSED	5#define _PAGE_BIT_DIRTY		6#define _PAGE_BIT_PSE		7	/* 4 MB (or 2MB) page, Pentium+, if present.. */#define _PAGE_BIT_GLOBAL	8	/* Global TLB entry PPro+ */#define _PAGE_PRESENT	0x001#define _PAGE_RW	0x002#define _PAGE_USER	0x004#define _PAGE_PWT	0x008#define _PAGE_PCD	0x010#define _PAGE_ACCESSED	0x020#define _PAGE_DIRTY	0x040#define _PAGE_PSE	0x080	/* 4 MB (or 2MB) page, Pentium+, if present.. */#define _PAGE_GLOBAL	0x100	/* Global TLB entry PPro+ */#define _PAGE_PROTNONE	0x080	/* If not present */#define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)#define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)#define _PAGE_CHG_MASK	(PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)#define PAGE_NONE	__pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)#define PAGE_COPY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)#define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)#define __PAGE_KERNEL \	(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)#define __PAGE_KERNEL_NOCACHE \	(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_PCD | _PAGE_ACCESSED)#define __PAGE_KERNEL_RO \	(_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED)#ifdef CONFIG_X86_PGE# define MAKE_GLOBAL(x) __pgprot((x) | _PAGE_GLOBAL)#else# define MAKE_GLOBAL(x)						\	({							\		pgprot_t __ret;					\								\		if (cpu_has_pge)				\			__ret = __pgprot((x) | _PAGE_GLOBAL);	\		else						\			__ret = __pgprot(x);			\		__ret;						\	})#endif#define PAGE_KERNEL MAKE_GLOBAL(__PAGE_KERNEL)#define PAGE_KERNEL_RO MAKE_GLOBAL(__PAGE_KERNEL_RO)#define PAGE_KERNEL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE)/* * The i386 can't do page protection for execute, and considers that * the same are read. Also, write permissions imply read permissions. * This is the closest we can get.. */#define __P000	PAGE_NONE#define __P001	PAGE_READONLY#define __P010	PAGE_COPY#define __P011	PAGE_COPY#define __P100	PAGE_READONLY#define __P101	PAGE_READONLY#define __P110	PAGE_COPY#define __P111	PAGE_COPY#define __S000	PAGE_NONE#define __S001	PAGE_READONLY#define __S010	PAGE_SHARED#define __S011	PAGE_SHARED#define __S100	PAGE_READONLY#define __S101	PAGE_READONLY#define __S110	PAGE_SHARED#define __S111	PAGE_SHARED/* * Define this if things work differently on an i386 and an i486: * it will (on an i486) warn about kernel memory accesses that are * done without a 'verify_area(VERIFY_WRITE,..)' */#undef TEST_VERIFY_AREA/* page table for 0-4MB for everybody */extern unsigned long pg0[1024];/* * Handling allocation failures during page table setup. */extern void __handle_bad_pmd(pmd_t * pmd);extern void __handle_bad_pmd_kernel(pmd_t * pmd);#define pte_present(x)	((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))#define pte_clear(xp)	do { set_pte(xp, __pte(0)); } while (0)#define pmd_none(x)	(!pmd_val(x))#define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)#define pmd_clear(xp)	do { set_pmd(xp, __pmd(0)); } while (0)#define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)/* * Permanent address of a page. Obviously must never be * called on a highmem page. */#define page_address(page) ((page)->virtual)#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))/* * The following only work if pte_present() is true. * Undefined behaviour if not.. */static inline int pte_read(pte_t pte)		{ return (pte).pte_low & _PAGE_USER; }static inline int pte_exec(pte_t pte)		{ return (pte).pte_low & _PAGE_USER; }static inline int pte_dirty(pte_t pte)		{ return (pte).pte_low & _PAGE_DIRTY; }static inline int pte_young(pte_t pte)		{ return (pte).pte_low & _PAGE_ACCESSED; }static inline int pte_write(pte_t pte)		{ return (pte).pte_low & _PAGE_RW; }static inline pte_t pte_rdprotect(pte_t pte)	{ (pte).pte_low &= ~_PAGE_USER; return pte; }static inline pte_t pte_exprotect(pte_t pte)	{ (pte).pte_low &= ~_PAGE_USER; return pte; }static inline pte_t pte_mkclean(pte_t pte)	{ (pte).pte_low &= ~_PAGE_DIRTY; return pte; }static inline pte_t pte_mkold(pte_t pte)	{ (pte).pte_low &= ~_PAGE_ACCESSED; return pte; }static inline pte_t pte_wrprotect(pte_t pte)	{ (pte).pte_low &= ~_PAGE_RW; return pte; }static inline pte_t pte_mkread(pte_t pte)	{ (pte).pte_low |= _PAGE_USER; return pte; }static inline pte_t pte_mkexec(pte_t pte)	{ (pte).pte_low |= _PAGE_USER; return pte; }static inline pte_t pte_mkdirty(pte_t pte)	{ (pte).pte_low |= _PAGE_DIRTY; return pte; }static inline pte_t pte_mkyoung(pte_t pte)	{ (pte).pte_low |= _PAGE_ACCESSED; return pte; }static inline pte_t pte_mkwrite(pte_t pte)	{ (pte).pte_low |= _PAGE_RW; return pte; }static inline  int ptep_test_and_clear_dirty(pte_t *ptep)	{ return test_and_clear_bit(_PAGE_BIT_DIRTY, ptep); }static inline  int ptep_test_and_clear_young(pte_t *ptep)	{ return test_and_clear_bit(_PAGE_BIT_ACCESSED, ptep); }static inline void ptep_set_wrprotect(pte_t *ptep)		{ clear_bit(_PAGE_BIT_RW, ptep); }static inline void ptep_mkdirty(pte_t *ptep)			{ set_bit(_PAGE_BIT_DIRTY, ptep); }/* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */#define mk_pte(page, pgprot)	__mk_pte((page) - mem_map, (pgprot))/* This takes a physical page address that is used by the remapping functions */#define mk_pte_phys(physpage, pgprot)	__mk_pte((physpage) >> PAGE_SHIFT, pgprot)static inline pte_t pte_modify(pte_t pte, pgprot_t newprot){	pte.pte_low &= _PAGE_CHG_MASK;	pte.pte_low |= pgprot_val(newprot);	return pte;}#define page_pte(page) page_pte_prot(page, __pgprot(0))#define pmd_page(pmd) \((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))/* to find an entry in a page-table-directory. */#define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))#define __pgd_offset(address) pgd_index(address)#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))/* to find an entry in a kernel page-table-directory */#define pgd_offset_k(address) pgd_offset(&init_mm, address)#define __pmd_offset(address) \		(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))/* Find an entry in the third-level page table.. */#define __pte_offset(address) \		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))#define pte_offset(dir, address) ((pte_t *) pmd_page(*(dir)) + \			__pte_offset(address))/* * The i386 doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */#define update_mmu_cache(vma,address,pte) do { } while (0)/* Encode and de-code a swap entry */#define SWP_TYPE(x)			(((x).val >> 1) & 0x3f)#define SWP_OFFSET(x)			((x).val >> 8)#define SWP_ENTRY(type, offset)		((swp_entry_t) { ((type) << 1) | ((offset) << 8) })#define pte_to_swp_entry(pte)		((swp_entry_t) { (pte).pte_low })#define swp_entry_to_pte(x)		((pte_t) { (x).val })#endif /* !__ASSEMBLY__ *//* Needs to be defined here and not in linux/mm.h, as it is arch dependent */#define PageSkip(page)		(0)#define kern_addr_valid(addr)	(1)#define io_remap_page_range remap_page_range#endif /* _I386_PGTABLE_H */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -