📄 pgtable.h
字号:
#ifndef _I386_PGTABLE_H#define _I386_PGTABLE_H#include <linux/config.h>/* * The Linux memory management assumes a three-level page table setup. On * the i386, we use that, but "fold" the mid level into the top-level page * table, so that we physically have the same two-level page table as the * i386 mmu expects. * * This file contains the functions and defines necessary to modify and use * the i386 page table tree. */#ifndef __ASSEMBLY__#include <asm/processor.h>#include <asm/fixmap.h>#include <linux/threads.h>#ifndef _I386_BITOPS_H#include <asm/bitops.h>#endifextern pgd_t swapper_pg_dir[1024];extern void paging_init(void);/* Caches aren't brain-dead on the intel. */#define flush_cache_all() do { } while (0)#define flush_cache_mm(mm) do { } while (0)#define flush_cache_range(mm, start, end) do { } while (0)#define flush_cache_page(vma, vmaddr) do { } while (0)#define flush_page_to_ram(page) do { } while (0)#define flush_dcache_page(page) do { } while (0)#define flush_icache_range(start, end) do { } while (0)#define flush_icache_page(vma,pg) do { } while (0)#define __flush_tlb() \ do { \ unsigned int tmpreg; \ \ __asm__ __volatile__( \ "movl %%cr3, %0; # flush TLB \n" \ "movl %0, %%cr3; \n" \ : "=r" (tmpreg) \ :: "memory"); \ } while (0)/* * Global pages have to be flushed a bit differently. Not a real * performance problem because this does not happen often. */#define __flush_tlb_global() \ do { \ unsigned int tmpreg; \ \ __asm__ __volatile__( \ "movl %1, %%cr4; # turn off PGE \n" \ "movl %%cr3, %0; # flush TLB \n" \ "movl %0, %%cr3; \n" \ "movl %2, %%cr4; # turn PGE back on \n" \ : "=&r" (tmpreg) \ : "r" (mmu_cr4_features & ~X86_CR4_PGE), \ "r" (mmu_cr4_features) \ : "memory"); \ } while (0)extern unsigned long pgkern_mask;/* * Do not check the PGE bit unnecesserily if this is a PPro+ kernel. */#ifdef CONFIG_X86_PGE# define __flush_tlb_all() __flush_tlb_global()#else# define __flush_tlb_all() \ do { \ if (cpu_has_pge) \ __flush_tlb_global(); \ else \ __flush_tlb(); \ } while (0)#endif#ifndef CONFIG_X86_INVLPG#define __flush_tlb_one(addr) __flush_tlb()#else#define __flush_tlb_one(addr) \__asm__ __volatile__("invlpg %0": :"m" (*(char *) addr))#endif/* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */extern unsigned long empty_zero_page[1024];#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))#endif /* !__ASSEMBLY__ *//* * The Linux x86 paging architecture is 'compile-time dual-mode', it * implements both the traditional 2-level x86 page tables and the * newer 3-level PAE-mode page tables. */#ifndef __ASSEMBLY__#if CONFIG_X86_PAE# include <asm/pgtable-3level.h>#else# include <asm/pgtable-2level.h>#endif#endif#define __beep() asm("movb $0x3,%al; outb %al,$0x61")#define PMD_SIZE (1UL << PMD_SHIFT)#define PMD_MASK (~(PMD_SIZE-1))#define PGDIR_SIZE (1UL << PGDIR_SHIFT)#define PGDIR_MASK (~(PGDIR_SIZE-1))#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)#define FIRST_USER_PGD_NR 0#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)#define TWOLEVEL_PGDIR_SHIFT 22#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)#define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)#ifndef __ASSEMBLY__/* Just any arbitrary offset to the start of the vmalloc VM area: the * current 8MB value just means that there will be a 8MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) */#define VMALLOC_OFFSET (8*1024*1024)#define VMALLOC_START (((unsigned long) high_memory + 2*VMALLOC_OFFSET-1) & \ ~(VMALLOC_OFFSET-1))#define VMALLOC_VMADDR(x) ((unsigned long)(x))#define VMALLOC_END (FIXADDR_START)/* * The 4MB page is guessing.. Detailed in the infamous "Chapter H" * of the Pentium details, but assuming intel did the straightforward * thing, this bit set in the page directory entry just means that * the page directory entry points directly to a 4MB-aligned block of * memory. */#define _PAGE_BIT_PRESENT 0#define _PAGE_BIT_RW 1#define _PAGE_BIT_USER 2#define _PAGE_BIT_PWT 3#define _PAGE_BIT_PCD 4#define _PAGE_BIT_ACCESSED 5#define _PAGE_BIT_DIRTY 6#define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page, Pentium+, if present.. */#define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */#define _PAGE_PRESENT 0x001#define _PAGE_RW 0x002#define _PAGE_USER 0x004#define _PAGE_PWT 0x008#define _PAGE_PCD 0x010#define _PAGE_ACCESSED 0x020#define _PAGE_DIRTY 0x040#define _PAGE_PSE 0x080 /* 4 MB (or 2MB) page, Pentium+, if present.. */#define _PAGE_GLOBAL 0x100 /* Global TLB entry PPro+ */#define _PAGE_PROTNONE 0x080 /* If not present */#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)#define __PAGE_KERNEL \ (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)#define __PAGE_KERNEL_NOCACHE \ (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_PCD | _PAGE_ACCESSED)#define __PAGE_KERNEL_RO \ (_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED)#ifdef CONFIG_X86_PGE# define MAKE_GLOBAL(x) __pgprot((x) | _PAGE_GLOBAL)#else# define MAKE_GLOBAL(x) \ ({ \ pgprot_t __ret; \ \ if (cpu_has_pge) \ __ret = __pgprot((x) | _PAGE_GLOBAL); \ else \ __ret = __pgprot(x); \ __ret; \ })#endif#define PAGE_KERNEL MAKE_GLOBAL(__PAGE_KERNEL)#define PAGE_KERNEL_RO MAKE_GLOBAL(__PAGE_KERNEL_RO)#define PAGE_KERNEL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE)/* * The i386 can't do page protection for execute, and considers that * the same are read. Also, write permissions imply read permissions. * This is the closest we can get.. */#define __P000 PAGE_NONE#define __P001 PAGE_READONLY#define __P010 PAGE_COPY#define __P011 PAGE_COPY#define __P100 PAGE_READONLY#define __P101 PAGE_READONLY#define __P110 PAGE_COPY#define __P111 PAGE_COPY#define __S000 PAGE_NONE#define __S001 PAGE_READONLY#define __S010 PAGE_SHARED#define __S011 PAGE_SHARED#define __S100 PAGE_READONLY#define __S101 PAGE_READONLY#define __S110 PAGE_SHARED#define __S111 PAGE_SHARED/* * Define this if things work differently on an i386 and an i486: * it will (on an i486) warn about kernel memory accesses that are * done without a 'verify_area(VERIFY_WRITE,..)' */#undef TEST_VERIFY_AREA/* page table for 0-4MB for everybody */extern unsigned long pg0[1024];/* * Handling allocation failures during page table setup. */extern void __handle_bad_pmd(pmd_t * pmd);extern void __handle_bad_pmd_kernel(pmd_t * pmd);#define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))#define pte_clear(xp) do { set_pte(xp, __pte(0)); } while (0)#define pmd_none(x) (!pmd_val(x))#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)#define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0)#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)/* * Permanent address of a page. Obviously must never be * called on a highmem page. */#define page_address(page) ((page)->virtual)#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))/* * The following only work if pte_present() is true. * Undefined behaviour if not.. */static inline int pte_read(pte_t pte) { return (pte).pte_low & _PAGE_USER; }static inline int pte_exec(pte_t pte) { return (pte).pte_low & _PAGE_USER; }static inline int pte_dirty(pte_t pte) { return (pte).pte_low & _PAGE_DIRTY; }static inline int pte_young(pte_t pte) { return (pte).pte_low & _PAGE_ACCESSED; }static inline int pte_write(pte_t pte) { return (pte).pte_low & _PAGE_RW; }static inline pte_t pte_rdprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; }static inline pte_t pte_exprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; }static inline pte_t pte_mkclean(pte_t pte) { (pte).pte_low &= ~_PAGE_DIRTY; return pte; }static inline pte_t pte_mkold(pte_t pte) { (pte).pte_low &= ~_PAGE_ACCESSED; return pte; }static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_RW; return pte; }static inline pte_t pte_mkread(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; }static inline pte_t pte_mkexec(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; }static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte_low |= _PAGE_DIRTY; return pte; }static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte_low |= _PAGE_ACCESSED; return pte; }static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte_low |= _PAGE_RW; return pte; }static inline int ptep_test_and_clear_dirty(pte_t *ptep) { return test_and_clear_bit(_PAGE_BIT_DIRTY, ptep); }static inline int ptep_test_and_clear_young(pte_t *ptep) { return test_and_clear_bit(_PAGE_BIT_ACCESSED, ptep); }static inline void ptep_set_wrprotect(pte_t *ptep) { clear_bit(_PAGE_BIT_RW, ptep); }static inline void ptep_mkdirty(pte_t *ptep) { set_bit(_PAGE_BIT_DIRTY, ptep); }/* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */#define mk_pte(page, pgprot) __mk_pte((page) - mem_map, (pgprot))/* This takes a physical page address that is used by the remapping functions */#define mk_pte_phys(physpage, pgprot) __mk_pte((physpage) >> PAGE_SHIFT, pgprot)static inline pte_t pte_modify(pte_t pte, pgprot_t newprot){ pte.pte_low &= _PAGE_CHG_MASK; pte.pte_low |= pgprot_val(newprot); return pte;}#define page_pte(page) page_pte_prot(page, __pgprot(0))#define pmd_page(pmd) \((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))/* to find an entry in a page-table-directory. */#define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))#define __pgd_offset(address) pgd_index(address)#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))/* to find an entry in a kernel page-table-directory */#define pgd_offset_k(address) pgd_offset(&init_mm, address)#define __pmd_offset(address) \ (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))/* Find an entry in the third-level page table.. */#define __pte_offset(address) \ ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))#define pte_offset(dir, address) ((pte_t *) pmd_page(*(dir)) + \ __pte_offset(address))/* * The i386 doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */#define update_mmu_cache(vma,address,pte) do { } while (0)/* Encode and de-code a swap entry */#define SWP_TYPE(x) (((x).val >> 1) & 0x3f)#define SWP_OFFSET(x) ((x).val >> 8)#define SWP_ENTRY(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 8) })#define pte_to_swp_entry(pte) ((swp_entry_t) { (pte).pte_low })#define swp_entry_to_pte(x) ((pte_t) { (x).val })#endif /* !__ASSEMBLY__ *//* Needs to be defined here and not in linux/mm.h, as it is arch dependent */#define PageSkip(page) (0)#define kern_addr_valid(addr) (1)#define io_remap_page_range remap_page_range#endif /* _I386_PGTABLE_H */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -