📄 pgtable.h
字号:
#ifndef _ASM_IA64_PGTABLE_H#define _ASM_IA64_PGTABLE_H/* * This file contains the functions and defines necessary to modify and use * the IA-64 page table tree. * * This hopefully works with any (fixed) IA-64 page-size, as defined * in <asm/page.h> (currently 8192). * * Copyright (C) 1998-2000 Hewlett-Packard Co * Copyright (C) 1998-2000 David Mosberger-Tang <davidm@hpl.hp.com> */#include <linux/config.h>#include <asm/mman.h>#include <asm/page.h>#include <asm/processor.h>#include <asm/types.h>#define IA64_MAX_PHYS_BITS 50 /* max. number of physical address bits (architected) *//* * First, define the various bits in a PTE. Note that the PTE format * matches the VHPT short format, the firt doubleword of the VHPD long * format, and the first doubleword of the TLB insertion format. */#define _PAGE_P_BIT 0#define _PAGE_A_BIT 5#define _PAGE_D_BIT 6#define _PAGE_P (1 << _PAGE_P_BIT) /* page present bit */#define _PAGE_MA_WB (0x0 << 2) /* write back memory attribute */#define _PAGE_MA_UC (0x4 << 2) /* uncacheable memory attribute */#define _PAGE_MA_UCE (0x5 << 2) /* UC exported attribute */#define _PAGE_MA_WC (0x6 << 2) /* write coalescing memory attribute */#define _PAGE_MA_NAT (0x7 << 2) /* not-a-thing attribute */#define _PAGE_MA_MASK (0x7 << 2)#define _PAGE_PL_0 (0 << 7) /* privilege level 0 (kernel) */#define _PAGE_PL_1 (1 << 7) /* privilege level 1 (unused) */#define _PAGE_PL_2 (2 << 7) /* privilege level 2 (unused) */#define _PAGE_PL_3 (3 << 7) /* privilege level 3 (user) */#define _PAGE_PL_MASK (3 << 7)#define _PAGE_AR_R (0 << 9) /* read only */#define _PAGE_AR_RX (1 << 9) /* read & execute */#define _PAGE_AR_RW (2 << 9) /* read & write */#define _PAGE_AR_RWX (3 << 9) /* read, write & execute */#define _PAGE_AR_R_RW (4 << 9) /* read / read & write */#define _PAGE_AR_RX_RWX (5 << 9) /* read & exec / read, write & exec */#define _PAGE_AR_RWX_RW (6 << 9) /* read, write & exec / read & write */#define _PAGE_AR_X_RX (7 << 9) /* exec & promote / read & exec */#define _PAGE_AR_MASK (7 << 9)#define _PAGE_AR_SHIFT 9#define _PAGE_A (1 << _PAGE_A_BIT) /* page accessed bit */#define _PAGE_D (1 << _PAGE_D_BIT) /* page dirty bit */#define _PAGE_PPN_MASK (((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL)#define _PAGE_ED (__IA64_UL(1) << 52) /* exception deferral */#define _PAGE_PROTNONE (__IA64_UL(1) << 63)#define _PFN_MASK _PAGE_PPN_MASK#define _PAGE_CHG_MASK (_PFN_MASK | _PAGE_A | _PAGE_D)#define _PAGE_SIZE_4K 12#define _PAGE_SIZE_8K 13#define _PAGE_SIZE_16K 14#define _PAGE_SIZE_64K 16#define _PAGE_SIZE_256K 18#define _PAGE_SIZE_1M 20#define _PAGE_SIZE_4M 22#define _PAGE_SIZE_16M 24#define _PAGE_SIZE_64M 26#define _PAGE_SIZE_256M 28#define __ACCESS_BITS _PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB#define __DIRTY_BITS_NO_ED _PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB#define __DIRTY_BITS _PAGE_ED | __DIRTY_BITS_NO_ED/* * Definitions for first level: * * PGDIR_SHIFT determines what a first-level page table entry can map. */#define PGDIR_SHIFT (PAGE_SHIFT + 2*(PAGE_SHIFT-3))#define PGDIR_SIZE (__IA64_UL(1) << PGDIR_SHIFT)#define PGDIR_MASK (~(PGDIR_SIZE-1))#define PTRS_PER_PGD (__IA64_UL(1) << (PAGE_SHIFT-3))#define USER_PTRS_PER_PGD (5*PTRS_PER_PGD/8) /* regions 0-4 are user regions */#define FIRST_USER_PGD_NR 0/* * Definitions for second level: * * PMD_SHIFT determines the size of the area a second-level page table * can map. */#define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3))#define PMD_SIZE (__IA64_UL(1) << PMD_SHIFT)#define PMD_MASK (~(PMD_SIZE-1))#define PTRS_PER_PMD (__IA64_UL(1) << (PAGE_SHIFT-3))/* * Definitions for third level: */#define PTRS_PER_PTE (__IA64_UL(1) << (PAGE_SHIFT-3))# ifndef __ASSEMBLY__#include <asm/bitops.h>#include <asm/mmu_context.h>#include <asm/system.h>/* * All the normal masks have the "page accessed" bits on, as any time * they are used, the page is accessed. They are cleared only by the * page-out routines. On the other hand, we do NOT turn on the * execute bit on pages that are mapped writable. For those pages, we * turn on the X bit only when the program attempts to actually * execute code in such a page (it's a "lazy execute bit", if you * will). This lets reduce the amount of i-cache flushing we have to * do for data pages such as stack and heap pages. */#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_A)#define PAGE_SHARED __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW)#define PAGE_READONLY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)#define PAGE_COPY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)#define PAGE_GATE __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX)#define PAGE_KERNEL __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX)/* * Next come the mappings that determine how mmap() protection bits * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented. The * _P version gets used for a private shared memory segment, the _S * version gets used for a shared memory segment with MAP_SHARED on. * In a private shared memory segment, we do a copy-on-write if a task * attempts to write to the page. */ /* xwr */#define __P000 PAGE_NONE#define __P001 PAGE_READONLY#define __P010 PAGE_READONLY /* write to priv pg -> copy & make writable */#define __P011 PAGE_READONLY /* ditto */#define __P100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)#define __P101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)#define __P110 PAGE_COPY#define __P111 PAGE_COPY#define __S000 PAGE_NONE#define __S001 PAGE_READONLY#define __S010 PAGE_SHARED /* we don't have (and don't need) write-only */#define __S011 PAGE_SHARED#define __S100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)#define __S101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)#define __S110 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW)#define __S111 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW)#define pgd_ERROR(e) printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))#define pmd_ERROR(e) printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))#define pte_ERROR(e) printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))/* * Some definitions to translate between mem_map, PTEs, and page * addresses: *//* * Given a pointer to an mem_map[] entry, return the kernel virtual * address corresponding to that page. */#define page_address(page) ((page)->virtual)/* Quick test to see if ADDR is a (potentially) valid physical address. */static inline longia64_phys_addr_valid (unsigned long addr){ return (addr & (my_cpu_data.unimpl_pa_mask)) == 0;}/* * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel * memory. For the return value to be meaningful, ADDR must be >= * PAGE_OFFSET. This operation can be relatively expensive (e.g., * require a hash-, or multi-level tree-lookup or something of that * sort) but it guarantees to return TRUE only if accessing the page * at that address does not cause an error. Note that there may be * addresses for which kern_addr_valid() returns FALSE even though an * access would not cause an error (e.g., this is typically true for * memory mapped I/O regions. * * XXX Need to implement this for IA-64. */#define kern_addr_valid(addr) (1)/* * Now come the defines and routines to manage and access the three-level * page table. *//* * On some architectures, special things need to be done when setting * the PTE in a page table. Nothing special needs to be on IA-64. */#define set_pte(ptep, pteval) (*(ptep) = (pteval))#define RGN_SIZE (1UL << 61)#define RGN_MAP_LIMIT (1UL << (4*PAGE_SHIFT - 12)) /* limit of mappable area in region */#define RGN_KERNEL 7#define VMALLOC_START (0xa000000000000000 + 2*PAGE_SIZE)#define VMALLOC_VMADDR(x) ((unsigned long)(x))#define VMALLOC_END (0xa000000000000000 + RGN_MAP_LIMIT)/* * BAD_PAGETABLE is used when we need a bogus page-table, while * BAD_PAGE is used for a bogus page. * * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */extern pte_t ia64_bad_page (void);extern pmd_t *ia64_bad_pagetable (void);#define BAD_PAGETABLE ia64_bad_pagetable()#define BAD_PAGE ia64_bad_page()/* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */#define mk_pte(page,pgprot) \({ \ pte_t __pte; \ \ pte_val(__pte) = ((page - mem_map) << PAGE_SHIFT) | pgprot_val(pgprot); \ __pte; \})/* This takes a physical page address that is used by the remapping functions */#define mk_pte_phys(physpage, pgprot) \
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -