⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pgtable.h

📁 Linux内核源代码 为压缩文件 是<<Linux内核>>一书中的源代码
💻 H
📖 第 1 页 / 共 2 页
字号:
#ifndef _ASM_IA64_PGTABLE_H#define _ASM_IA64_PGTABLE_H/* * This file contains the functions and defines necessary to modify and use * the IA-64 page table tree. * * This hopefully works with any (fixed) IA-64 page-size, as defined * in <asm/page.h> (currently 8192). * * Copyright (C) 1998-2000 Hewlett-Packard Co * Copyright (C) 1998-2000 David Mosberger-Tang <davidm@hpl.hp.com> */#include <linux/config.h>#include <asm/mman.h>#include <asm/page.h>#include <asm/processor.h>#include <asm/types.h>#define IA64_MAX_PHYS_BITS	50	/* max. number of physical address bits (architected) *//* * First, define the various bits in a PTE.  Note that the PTE format * matches the VHPT short format, the firt doubleword of the VHPD long * format, and the first doubleword of the TLB insertion format. */#define _PAGE_P_BIT		0#define _PAGE_A_BIT		5#define _PAGE_D_BIT		6#define _PAGE_P			(1 << _PAGE_P_BIT)	/* page present bit */#define _PAGE_MA_WB		(0x0 <<  2)	/* write back memory attribute */#define _PAGE_MA_UC		(0x4 <<  2)	/* uncacheable memory attribute */#define _PAGE_MA_UCE		(0x5 <<  2)	/* UC exported attribute */#define _PAGE_MA_WC		(0x6 <<  2)	/* write coalescing memory attribute */#define _PAGE_MA_NAT		(0x7 <<  2)	/* not-a-thing attribute */#define _PAGE_MA_MASK		(0x7 <<  2)#define _PAGE_PL_0		(0 <<  7)	/* privilege level 0 (kernel) */#define _PAGE_PL_1		(1 <<  7)	/* privilege level 1 (unused) */#define _PAGE_PL_2		(2 <<  7)	/* privilege level 2 (unused) */#define _PAGE_PL_3		(3 <<  7)	/* privilege level 3 (user) */#define _PAGE_PL_MASK		(3 <<  7)#define _PAGE_AR_R		(0 <<  9)	/* read only */#define _PAGE_AR_RX		(1 <<  9)	/* read & execute */#define _PAGE_AR_RW		(2 <<  9)	/* read & write */#define _PAGE_AR_RWX		(3 <<  9)	/* read, write & execute */#define _PAGE_AR_R_RW		(4 <<  9)	/* read / read & write */#define _PAGE_AR_RX_RWX		(5 <<  9)	/* read & exec / read, write & exec */#define _PAGE_AR_RWX_RW		(6 <<  9)	/* read, write & exec / read & write */#define _PAGE_AR_X_RX		(7 <<  9)	/* exec & promote / read & exec */#define _PAGE_AR_MASK		(7 <<  9)#define _PAGE_AR_SHIFT		9#define _PAGE_A			(1 << _PAGE_A_BIT)	/* page accessed bit */#define _PAGE_D			(1 << _PAGE_D_BIT)	/* page dirty bit */#define _PAGE_PPN_MASK		(((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL)#define _PAGE_ED		(__IA64_UL(1) << 52)	/* exception deferral */#define _PAGE_PROTNONE		(__IA64_UL(1) << 63)#define _PFN_MASK		_PAGE_PPN_MASK#define _PAGE_CHG_MASK		(_PFN_MASK | _PAGE_A | _PAGE_D)#define _PAGE_SIZE_4K	12#define _PAGE_SIZE_8K	13#define _PAGE_SIZE_16K	14#define _PAGE_SIZE_64K	16#define _PAGE_SIZE_256K	18#define _PAGE_SIZE_1M	20#define _PAGE_SIZE_4M	22#define _PAGE_SIZE_16M	24#define _PAGE_SIZE_64M	26#define _PAGE_SIZE_256M	28#define __ACCESS_BITS		_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB#define __DIRTY_BITS_NO_ED	_PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB#define __DIRTY_BITS		_PAGE_ED | __DIRTY_BITS_NO_ED/* * Definitions for first level: * * PGDIR_SHIFT determines what a first-level page table entry can map. */#define PGDIR_SHIFT		(PAGE_SHIFT + 2*(PAGE_SHIFT-3))#define PGDIR_SIZE		(__IA64_UL(1) << PGDIR_SHIFT)#define PGDIR_MASK		(~(PGDIR_SIZE-1))#define PTRS_PER_PGD		(__IA64_UL(1) << (PAGE_SHIFT-3))#define USER_PTRS_PER_PGD	(5*PTRS_PER_PGD/8)	/* regions 0-4 are user regions */#define FIRST_USER_PGD_NR	0/* * Definitions for second level: * * PMD_SHIFT determines the size of the area a second-level page table * can map. */#define PMD_SHIFT	(PAGE_SHIFT + (PAGE_SHIFT-3))#define PMD_SIZE	(__IA64_UL(1) << PMD_SHIFT)#define PMD_MASK	(~(PMD_SIZE-1))#define PTRS_PER_PMD	(__IA64_UL(1) << (PAGE_SHIFT-3))/* * Definitions for third level: */#define PTRS_PER_PTE	(__IA64_UL(1) << (PAGE_SHIFT-3))# ifndef __ASSEMBLY__#include <asm/bitops.h>#include <asm/mmu_context.h>#include <asm/system.h>/* * All the normal masks have the "page accessed" bits on, as any time * they are used, the page is accessed. They are cleared only by the * page-out routines.  On the other hand, we do NOT turn on the * execute bit on pages that are mapped writable.  For those pages, we * turn on the X bit only when the program attempts to actually * execute code in such a page (it's a "lazy execute bit", if you * will).  This lets reduce the amount of i-cache flushing we have to * do for data pages such as stack and heap pages. */#define PAGE_NONE	__pgprot(_PAGE_PROTNONE | _PAGE_A)#define PAGE_SHARED	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW)#define PAGE_READONLY	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)#define PAGE_COPY	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)#define PAGE_GATE	__pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX)#define PAGE_KERNEL	__pgprot(__DIRTY_BITS  | _PAGE_PL_0 | _PAGE_AR_RWX)/* * Next come the mappings that determine how mmap() protection bits * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented.  The * _P version gets used for a private shared memory segment, the _S * version gets used for a shared memory segment with MAP_SHARED on. * In a private shared memory segment, we do a copy-on-write if a task * attempts to write to the page. */	/* xwr */#define __P000	PAGE_NONE#define __P001	PAGE_READONLY#define __P010	PAGE_READONLY	/* write to priv pg -> copy & make writable */#define __P011	PAGE_READONLY	/* ditto */#define __P100	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)#define __P101	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)#define __P110	PAGE_COPY#define __P111	PAGE_COPY#define __S000	PAGE_NONE#define __S001	PAGE_READONLY#define __S010	PAGE_SHARED	/* we don't have (and don't need) write-only */#define __S011	PAGE_SHARED#define __S100	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)#define __S101	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)#define __S110	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW)#define __S111	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW)#define pgd_ERROR(e)	printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))#define pmd_ERROR(e)	printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))#define pte_ERROR(e)	printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))/* * Some definitions to translate between mem_map, PTEs, and page * addresses: *//* * Given a pointer to an mem_map[] entry, return the kernel virtual * address corresponding to that page. */#define page_address(page)	((page)->virtual)/* Quick test to see if ADDR is a (potentially) valid physical address. */static inline longia64_phys_addr_valid (unsigned long addr){	return (addr & (my_cpu_data.unimpl_pa_mask)) == 0;}/* * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel * memory.  For the return value to be meaningful, ADDR must be >= * PAGE_OFFSET.  This operation can be relatively expensive (e.g., * require a hash-, or multi-level tree-lookup or something of that * sort) but it guarantees to return TRUE only if accessing the page * at that address does not cause an error.  Note that there may be * addresses for which kern_addr_valid() returns FALSE even though an * access would not cause an error (e.g., this is typically true for * memory mapped I/O regions. * * XXX Need to implement this for IA-64. */#define kern_addr_valid(addr)	(1)/* * Now come the defines and routines to manage and access the three-level * page table. *//* * On some architectures, special things need to be done when setting * the PTE in a page table.  Nothing special needs to be on IA-64. */#define set_pte(ptep, pteval)	(*(ptep) = (pteval))#define RGN_SIZE	(1UL << 61)#define RGN_MAP_LIMIT	(1UL << (4*PAGE_SHIFT - 12))	/* limit of mappable area in region */#define RGN_KERNEL	7#define VMALLOC_START		(0xa000000000000000 + 2*PAGE_SIZE)#define VMALLOC_VMADDR(x)	((unsigned long)(x))#define VMALLOC_END		(0xa000000000000000 + RGN_MAP_LIMIT)/* * BAD_PAGETABLE is used when we need a bogus page-table, while * BAD_PAGE is used for a bogus page. * * ZERO_PAGE is a global shared page that is always zero:  used * for zero-mapped memory areas etc.. */extern pte_t ia64_bad_page (void);extern pmd_t *ia64_bad_pagetable (void);#define BAD_PAGETABLE	ia64_bad_pagetable()#define BAD_PAGE	ia64_bad_page()/* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */#define mk_pte(page,pgprot)							\({										\	pte_t __pte;								\										\	pte_val(__pte) = ((page - mem_map) << PAGE_SHIFT) | pgprot_val(pgprot);	\	__pte;									\})/* This takes a physical page address that is used by the remapping functions */#define mk_pte_phys(physpage, pgprot) \

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -